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Abstract
This paper describes the mathematics curriculum and teaching practices found in
a purposive sample of elementary schools working with three of America’s larg-
est comprehensive school reform programs. Data from 19,999 instructional logs
completed by 5009 first, third, and fourth grade teachers in 53 schools showed that
the mathematics taught in the schools under study was quite conventional, despite
a focus on instructional improvement. In particular, the typical mathematics les-
son in the schools under study focused on number concepts and operations, had
students working mostly with whole numbers (rather than other rational num-
bers), and involved direct teaching or review and practice of routine mathematics
skills. At the same time, there was wide variation in patterns of content coverage
and teaching practice in the schools under study, with variability in curriculum
coverage and teaching practice among teachers in the same school being far
greater than variability among teachers across schools in the sample. The results
of the study provide an initial view into the state of mathematics education in a
sample of schools deeply engaged in the process of comprehensive school reform

and suggest some future lines for research.



Using Instructional Logs to Study Elementary School Mathematics:

A Close Look at Curriculum and Teaching in the Early Grades
Much of what is known about mathematics education in American ele-
mentary schools comes from large-scale survey data collected over the past dec-

ade, especially the National Assessment of Educational Progress (NAEP), the

Schools and Staffing Survey (SASS), and the Third International Mathematics

and Science Study (TIMSS). Overall, these surveys paint a less than flattering

picture of mathematics instruction in American elementary schools. For example,
survey data suggest that the mathematics curriculum in American elementary
schools is both slow-paced and repetitive, emphasizing instruction on whole
number concepts and basic arithmetic operations more than any other single topic
in mathematics. The surveys also suggest that teachers in American elementary
schools rely almost exclusively on lecture, recitation, and seatwork in their prac-
tice, teaching students mostly how to use standard procedures or algorithms to do
basic arithmetic operations and solve simple word problems. As a result, elemen-
tary school students are provided few opportunities to engage in extended dis-
course about mathematics, and have few real chances to reason about or evaluate
complex mathematical ideas (Flanders, 1987; Fuson, Stigler, & Bartsch, 1988;
Henke, Chen, & Goldman, 1999; National Research Council, 2001; Schmidt,
McKbnight, & Raizen, 1997; Schmidt, McKnight, Cogan, Jakwerth, & Houang,

1999; Stigler & Heibert, 1999).



Critics of American education see these patterns of classroom instruction
as one explanation for the performance of elementary school students on stan-
dardized tests of mathematics achievement, especially the National Assessment of
Educational Progress (NAEP). On NAEP assessments, fourth grade students
typically perform quite well on mathematical tasks involving basic addition and
subtraction of whole numbers—the major focus of the early-grades mathematics
curriculum. But student performance drops off sharply on tasks that assess under-
standing of number concepts, require the use of rational numbers other than whole
numbers, or ask students to develop or justify solutions to complex (multi-step)
word problems (National Research Council, 2001: 136-138). In fact, on the most
recent NAEP mathematics assessment, nearly a third of American fourth graders
(31%) did not attain the “basic” level of performance, and only 26% of students

achieved NAEP’s “proficiency” standard (http://nces.ed.gov//timss;

http://nces.ed.gov/nationsreportcard).

The Problem
The description of mathematics education just presented is both sensible
and internally consistent, but gaps remain in our knowledge about the state of
mathematics education in American elementary schools. For one, most analyses
of large-scale, survey data on elementary school mathematics education have fo-
cused on a single grade level—fourth grade. NAEP data, for example, are for

fourth grade students, as is much of the data on nine-year-olds in the TIMSS data



set. Data on a wider range of grades are available in the Schools and Staffing
Survey, but this study has not been designed to examine curriculum or instruction
in much detail. As a result, little survey data on mathematics curriculum, instruc-
tion, or student achievement is available for grades below or above fourth grade,
and little data exists on how patterns of curriculum coverage and teaching prac-
tices in mathematics vary across the range of grade levels included in elementary
schools.

In addition, large-scale studies have typically relied on brief, annual sur-
veys of teachers to generate data about mathematics instruction (an exception was
the TIMSS video study). The problems of accuracy in annual surveys of teaching
practice are well known and there is widespread agreement that alternative data
collection approaches are needed to improve the quality of survey data on in-
structional practices in schools (Brewer & Stasz, 1996; Burstein et al., 1995;
Mayer, 1999; Mullens & Kasprzyk, 1996, 1999; Rowan, Camburn, & Correnti,
2002; Rowan, Correnti, & Miller, 2002; Shavelson, Webb, & Burstein, 1986).
Nevertheless, most of the evidence we have on mathematics education in Ameri-
can elementary schools continues to be based on one-shot surveys rather than al-
ternative data collection strategies.

Finally, with a few notable exceptions, reports on mathematics education
in American elementary schools focus on central tendencies in curriculum cover-

age and instructional practice. Much less attention has been paid to documenting



how curriculum and instruction vary across classrooms within the same school,
across schools serving different student populations, or across schools in different
policy environments. There is an assumption, of course, that mathematics in-
struction is different in high and low poverty schools (see, for example, the col-
lection of papers in Knapp and Shields, 1990), a sense that teachers have tremen-
dous autonomy, and therefore vary greatly in their mathematics teaching, even at
the same grade level and within the same school (Meyer and Rowan, 1978; Por-
ter, 1989; Stevenson and Baker, 1991), and a growing optimism that recent re-
form initiatives can produce different patterns of mathematics education in ele-
mentary schools (Cohen & Hill, 2000). But these assumptions have not been ex-
amined in any detail across a range of grades in American elementary schools, for
all of the reasons just mentioned and so our arguments about mathematics educa-
tion in American schools remain largely confined to discussions of central ten-
dencies.

Research Questions

This paper was designed to address the shortcomings in previous survey
research on instruction by presenting a new body of survey data on the nature of
mathematics education in 53 elementary schools participating in the first wave of

A Study of Instructional Improvement (SI1). The schools in this study were not

representative of American elementary schools generally, but they were never-

theless important objects of research, largely because of their participation in one



of three, large, comprehensive school reform programs now operating in the
United States—the Accelerated Schools Program, America’s Choice, and Success
for All. In this paper, we argue that this unique sample of schools provides the
educational research community with an important opportunity to examine
mathematics education in a diverse sample of elementary schools engaged in a
major reform initiative aimed squarely at changing the nature of instruction in
elementary schools.

To study how this approach to school reform was related to instructional

practices in schools, researchers conducting A Study of Instructional Improve-

ment designed an approach to collecting data on instruction intended to go beyond
the superficial view gotten from annual surveys of teachers. In the study reported
here, for example, instructional data were taken from logs completed frequently
by teachers throughout the academic year. As discussed below, log data can pro-
vide more accurate and more reliable data about instructional practices than data
gathered from annual surveys of teachers. As a result, a major purpose for writing
this paper was to demonstrate how teacher logs can be used to study mathematics
education in American elementary schools.

The log data also were used to address two sets of research questions.

One set of questions asked about central tendencies in mathematics instruction in

the 53 schools under study. In particular, we were interested in knowing if the

picture of curriculum coverage and teaching practice that emerged from log data



gathered in the current study would be similar to the one found in previous, large-
scale, survey research on elementary school mathematics education. In particular,
we were interested in charting the mathematics topics taught at particular grade
levels in the 53 schools under study, in examining the pace at which curriculum
coverage unfolded across grade levels, and in charting teaching practices at vary-
ing grade levels. The primary orienting question in all of these analyses was
whether schools engaged with three of America’s largest and most widely-
disseminated comprehensive school reform models would be characterized by
patterns of instructional practice that previous, large-scale surveys suggest are
typical in American elementary schools, or whether these schools had succeeded
in “breaking the mold” of conventional educational practice, as the venture phi-
lanthropists and model developers who founded these programs had hoped when
the models were first launched (Berends et al., 2002).

A second set of questions asked about variation in mathematics instruction
across the schools and classrooms under study. At least some survey research
suggests that teachers and schools vary widely in mathematics curriculum cover-
age and teaching practice—especially in the U.S. setting (e.g., Porter, 1989; Stev-
enson & Baker, 1991). However, the extent of such variation has not been
documented precisely in previous research. As a result, an additional goal of this
paper was to present a new empirical strategy for estimating the magnitude of

variation in curriculum coverage and teaching practices across teachers and



schools, and then to use this strategy to test hypotheses about why such variation
exists. All of this was related to an additional research question—whether
schools’ participation in the process of comprehensive school reform affected
those patterns of variation in mathematics content coverage and teaching practice
that previous research suggests might be typical of American elementary schools.
In the data analyzed here, for example, would we find widespread variation across
schools pursuing the different reform models under study? Further, would these
reform models work to reduce differences in instructional practices among teach-
ers within the same school (e.g., Porter, 1989)?

Sample of Schools in the Study

To address these questions, we used data on 53 schools collected during

the first and second years of A Study of Instructional Improvement, at a time

when the sample for this study was not yet fully realized. Fifteen of these schools
were participating in the Accelerated Schools Program, 15 were in the America’s
Choice program, 16 were in Success For All, and 7 others were chosen as “com-
parison” sites—schools that were not in any of these programs. By design,
schools in these four groups were matched in terms of student composition and
neighborhood characteristics.

The motivation for studying this sample was the emerging emphasis in
American education on the adoption by elementary schools of externally-

developed, comprehensive school reform (CSR) models (Berends et al., 2002).



At the time of this study, belief in the promise of CSR models as a means to pro-
moting instructional improvement was so strong that the federal government had
created financial and other incentives for the adoption of CSR models by local

schools as part of No Child Left Behind (PL 107-110, Part F, Section 1606, 1,

(a)). Moreover, by 2003, somewhere between ten and twenty percent of all public
elementary schools in the U.S. had adopted one or another CSR model, either in
response to federal or state incentives, or for some other reason (Datnow, 2000;
Rowan, in press).

Researchers conducting A Study of Instructional Improvement made sev-

eral important sampling decisions in developing a study of schools implementing
CSR models. One decision was to focus only on the three CSR programs under
study here. An implication of this decision, of course, is that the data on mathe-
matics education presented in this paper cannot be generalized beyond the pro-
grams studied. A second decision was to focus the study on high-poverty ele-
mentary schools. Historically, these have been the schools with the lowest stu-
dent achievement and the ones most frequently targeted by accountability meas-
ures in contemporary American education. The result of this focus, however, was
that the sample of schools studied was not representative of all U.S. elementary
schools. For example, in comparison to the nationally representative sample of

schools participating in the Early Childhood Longitudinal Survey (ECLS), the 53

schools studied here were more likely to be located in urban, urban fringe, or sub-
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urban areas (but not rural areas), serve students from lower SES backgrounds,
serve more Black and Asian/Pacific Islanders (but fewer Hispanic students), and
serve students whose parents were more likely to come from the lower and middle
ranges of the U.S. distribution of income, educational attainment, and occupa-
tional status. Appendix A provides information on the means and standard devia-
tions of key, school-level demographic variables for the 53 schools in the sample.
A final feature of the sample was the school’s level of engagement in in-
structional improvement activities. At the time of data collection, school im-
provement activities in the schools studied here were more focused on improving
reading/language arts instruction than on improving mathematics instruction. In
part, this reflected the emphasis of the CSR programs under study. For example,
all of the schools in the study working with Success for All began their participa-
tion in that program by adopting a highly specified program of reading instruction
in grades K-5. After three years of implementation, schools did have the option
of also adopting the Success for All mathematics component, but this was not re-
quired. As a result, in the sample studied here, only four Success for All schools
had adopted the Success for All mathematics program. Similarly, the America’s
Choice schools in the sample typically began their efforts by working to develop a
school’s writing program, with less overt attention given to mathematics im-
provement. However, America’s Choice did recommend that schools adopt an

“innovative” textbook series developed with National Science Foundation funding
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(Math Investigations). Moreover, this program provided some additional mathe-

matics curricular guidelines to schools in the form of mathematics standards and
reference exams, as well as some materials that could be used to teach a limited
number of specific mathematics topics. Almost all of the America’s Choice
schools in the sample followed these guidelines. Only the Accelerated Schools
Program gave equal priority to improving mathematics and language arts instruc-
tion from the outset of a school’s adoption of the model. However, at the time of
the study, the Accelerated Schools Program offered very little instructional guid-
ance, emphasizing instead that schools develop a commitment to providing “pow-
erful learning” and use locally developed strategies, rather than adopting specific
lesson scripts, curricular materials, or reference exams to improve the instruc-
tional program.

Despite these programmatic thrusts, leaders within the 53 schools in the
sample reported being actively engaged in improving mathematics in their
schools. On a survey of school leaders conducted as part of this research, school
administrators and program leaders in over 60% of schools reported that the
mathematics program in their schools “needed major improvement.” In the same
survey, school leaders in 90% of the schools reported that improvement of the
mathematics program was a “top” priority in their school improvement plans.
Along these lines, about a third of the schools under study reported using one of

the “innovative” mathematics texts developed with National Science Foundation
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support (i.e., Math Investigations, Everyday Math, or Math Trailblazers) and/or
using program materials specifically developed by Success for All or America’s
Choice. Of course, that means that about two-thirds of the schools were not using
“innovative” mathematics materials. Despite this, leaders in all of the schools in-
dicated that their schools were either: (a) in the process of developing or in the
early stages of implementing a new mathematics curriculum; or (b) working on
new mathematics curricular standards; or (c) helping teachers learn about new
curricular materials; or (d) aligning their textbooks and assignments with existing
state or local mathematics standards. Thus, while improvement activities varied
from school to school, all of the schools in the sample reported being actively en-
gaged (in one way or another) with improving their mathematics programs.

Using Teacher Logs to Record Data on Instruction

The key task in the study was to describe the mathematics instruction oc-
curring in the 53 schools under study. To do this, researchers conducting A Study

of Instructional Improvement used teacher logs as the primary data collection in-

strument. The general field of survey research has shown that logs or time diaries
(i.e., standardized questionnaire forms completed by respondents on a frequent
basis) overcome many of the problems of memory distortion and inaccuracy that
arise when respondents are asked to summarize, retrospectively, behaviors they
engaged in over an extended period of time. Key references here are Hilton

(1989), Hoppe et al. (2000), Leigh, Gillmore, and Morrison (1998), Lemmens,
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Knibble, and Tan (1988), Lemmens, Tan, and Knibble (1992), and Sudman and
Bradburn (1982).

Findings from this general literature are directly relevant to large-scale,
education surveys asking teachers to report on their curriculum coverage or
teaching practices retrospectively for an entire academic year on annual surveys.
Clearly, teachers’ retrospective, self-reports on these kinds of survey items will
suffer from problems of recall, and according to the general survey literature,
these problems will vary across curricular topics, depending on the overall fre-
guency with which particular topics were taught over the course of an academic
year. Moreover, when responding to an item on a retrospective questionnaire,
teachers with roughly similar patterns of content coverage or instructional prac-
tices are likely to use different estimation strategies in responding to an item. As
a result, two teachers with similar patterns of content coverage or instructional
practices can easily respond to the item differently, producing measurement error.

The Log Instrument

Frequently administered teacher logs should overcome many of these
problems, thereby providing more accurate data on instruction. To better under-
stand this point, consider the instructional log used in the current study (shown in
Appendix B). The log used here was simply a standardized questionnaire that
asked teachers to respond to simple checklists and other questionnaire items as a

means of reporting on their instructional practices. The main difference between
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this log and an annually-administered questionnaire, however, was in frequency
of administration.

Looking at the log (shown in Appendix B), the reader can see that there is
an initial section in which teachers were asked to report on the amount of time
spent on mathematics instruction on a given day and on the amount of emphasis
given to particular topics in the mathematics curriculum during this time. Then, if
teachers checked one of the “focal” topics of the study (topics expected to be the
most frequently taught or that currently are a focus of mathematics reform ef-
forts), they were directed to complete additional sets of items asking for more de-
tail about the content taught and instructional practices used. The decision to
limit additional data collection to these “focal” topics (rather than asking teachers
to report extensively on all curricular topics) was dictated by efforts to limit re-
spondent burden on the logs.

The reader will notice that teachers’ log reports referred to the instruction
received by a single student in their class, and that this instruction could have oc-
curred in any instructional setting (i.e. whole group, small group, individual). To
assure that such data provided an accurate record of teachers’ overall patterns of
teaching (across all students and over the course of an entire academic year), a
specific logging regime was developed. This procedure involved a teacher rotat-
ing log reports across a representative sample of eight students in his or her class-

room during the course of three, extended logging periods spaced evenly over the
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course of an academic year. In this design, teachers who participated in all of the
logging sessions were expected to fill out about 70 instructional logs, or about
nine logs per sampled student.

The Achieved Sample of Logs

For a variety of reasons having to do with the phasing of data collection,
only teachers in the first, third and fourth grades were asked to complete logs by
the second year of the study. In the data reported here, third grade teachers com-
pleted logs during the first year of the study, and first and fourth grade teachers
completed logs during the second year of the study. Also, due to the timing of
schools’ entry into the study, some comparison schools participated in only two
logging periods during the first year of the study. Therefore, these teachers pro-
vided fewer logs.

In addition, some of the log responses obtained from teachers were not
used in the analyses reported below. We began the analyses reported in this paper
with a sample of just over 26,000 logs provided by 509 teachers from the 53
schools, for a response rate of just over 90%. But 1,765 of these logs had prob-
lematic responses that rendered them useless for analytic purposes. In another
4,619 cases, the teacher or student who was the focus of the log report was absent
or school was out of session. The logs obtained for these cases were submitted
with absences marked and were useful in obtaining estimates of teacher and stu-

dent absentee rates; but these logs were not included in the present analysis.
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Thus, the final sample of logs analyzed here included 19,999 logs (8269 logs for
grade one, 7690 for grade three, and 8092 for grade 4) completed by 509 teachers
(or roughly 9 teachers per school). In this sample, the median teacher provided
usable data on around 42 days of instruction during a school year.

Evidence on the Accuracy of Log Data

A reasonable concern is whether these log data provided accurate evidence
about teachers’ instructional activities. To address this concern, careful steps
were taken during logging periods to assure the accuracy of teacher responses to
items in the log questionnaire. Prior to the beginning of each school year, teach-
ers participated in a training session in which they learned how to use the logs.
During this training session, teachers also were given definitions of the terms
found on the logs and a glossary that contained these definitions and rules for
coding. Finally, teachers were given a toll-free telephone number to ask research
staff coding questions, should these arise in the course of the study.

In a pre-test of these data collection procedures, we found that the logs
produced acceptable validity coefficients. For example, Hill (2003) reported on
the pre-test study of an earlier (but similar) version of the mathematics log used
here. In that study, 29 teachers in eight elementary schools completed an average
of more than 50 logs during the spring of the 2000 school year. As part of this
pre-test, well-trained observers worked in pairs to observe one lesson for each of

the 29 teachers in the study. After this lesson, the pairs of observers and the
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teacher completed a log questionnaire. A validity coefficient was then calculated
as the “match rates” among trained observers and teachers. Across the items re-
corded during the lessons observed, Hill (2003) reported match rates ranging from
1.00 (observers and teachers always matched their responses to an item) to .40
(observers and teachers matched on only 40% of occasions an item was checked
by either an observer or teacher). In these data, about 50% of the items had match
rates above 80%, another 20% had match rates between .70 and .80, while only
30% of items had match rates below .70. In subsequent item development work,
items with low validity coefficients were dropped from the final teacher log used
in this study, thus improving the overall accuracy of the current instrument.

Log-Based Measures of Content Coverage and Teaching Practice

In the current study, log data were used to construct measures of content
coverage and teaching practices for each day of mathematics instruction in the
data set. Thus, the primary unit of measurement was a single log report. Central
tendencies and variation in these log reports were then analyzed at three levels of
analysis: days, nested within teachers, nested within schools. Students were not an
object of measurement in these analyses, because preliminary analyses showed
that we could not reliably discriminate across students in the same classroom on
measures of content coverage or instructional practice. This suggests that teach-

ers (in this sample, at least) did not meaningfully vary their instruction across stu-
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dents within their classrooms. For a similar finding in the area of read-
ing/language arts, see Rowan, Camburn, and Correnti (2002).

Measures of Content Coverage

One set of measures used in this study were meant to assess teachers’ pat-
terns of content coverage. These measures were taken from items in the opening
section of the log. As Appendix B shows, the curriculum strands reported on
were: (1) number concepts; (2) operations; (3) patterns, functions, or algebra; (4)
money, time, or calendar; (5) representing or interpreting data; (6) geometry; (7)
measurement; (8) probability; (9) percent, ratio, or proportion; (10) negative
numbers; and (11) other. In the log, teachers rated whether a given topic was a
major focus of teaching that day, a minor focus, touched on briefly, or not taught.
However, in the analyses reported below, we re-coded teachers’ responses so that
lessons were assigned a score of 1 (topic was taught) when a teacher indicated
that the topic was a major or minor focus of the lesson, and a score of 0 (not
taught) when the teacher indicated the topic was touched on briefly or not taught.

Additional data on content coverage were collected if (and only if) teach-
ers reported that they taught one of the “focal topics” of interest in the study.
These focal topics were a subset of the topics just listed: (a) number concepts, (b)
operations, and (c) patterns, functions, or algebra. When a focal topic was taught
as a major or minor focus, the log elicited additional information from teachers

about curriculum content and teaching methods (in sections A, B, or C of the log).
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Using these data, we focused analyses on the extent to which teachers who cov-
ered number concepts or operations on a given day had students working with
whole numbers, fractions, decimals, or some combination of these numbers. In
addition, we examined whether teachers covering operations on a given day were
teaching addition, subtraction, multiplication, and/or division, and whether these
operations were being performed with whole numbers, fractions, and/or decimals.
We then used these data to study the unfolding of the operations curriculum
across grades.

Measures of Teaching Practice

Log data also were used to develop measures of teaching practice. How-
ever, to minimize respondent burden, these measures were constructed only for
occasions when a focal topic was taught. In this sense, the measures of teaching
practice discussed here did not describe teaching across the full range of curricu-
lar topics in the elementary school curriculum. However, the focal topics under
study were by far the most frequently taught mathematics topics in the schools
under study, so our measures did describe teaching practices for the most fre-
quently taught topics in elementary school mathematics.

The items used to construct the teaching practice measures asked teachers
to record whether or not they performed a particular teaching activity on a given
day. To create multi-item scales from these data, we simply grouped specific

items into analytic categories using logical statements. Three dimensions of
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teaching practice were measured—a measure of whether or not a teacher engaged
in direct teaching; a measure of the pacing of content coverage; and a measure of
the nature of students’ academic work. These item groupings correspond quite
closely to an exploratory factor analysis conducted as part of the research (and not
shown here), and more importantly, they reflect common conceptual discussions
of teaching practice in the mathematics education literature.

For purposes of measurement, a lesson was coded as including direct
teaching if a teacher reported: (a) presenting definitions of mathematical concepts
or teaching the steps to a mathematical procedure; or (b) making links among
multiple representations of a mathematics problem; or (c) asking oral recall ques-
tions of students. These items were seen as measuring the extent to which a
teacher was actively delivering curricular content to students. The pacing of in-
struction was coded according to whether a teacher reported: (a) re-teaching
known ideas; (b) introducing new ideas; or (c) doing both. We classified the na-

ture of students” academic work into one of three types. A lesson was coded as

involving routine practice if the teacher reported that students were (a) performing

tasks requiring known ideas and either (b) worked with flashcards, games, or
computer activities or (c) worked with textbooks, worksheets, or board work. A
lesson was coded as involving applications if a teacher reported that students: (a)
worked on word problems or examples from “real life” situations; and (b) were

asked to assess a problem and choose a method from among methods already pre-
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sented; and either (c) were asked to explain their answers or (d) work on problems
with multiple steps and solutions. A lesson was coded as involving analytic rea-
soning if the teacher reported that students were asked: (a) to analyze similarities
or differences among mathematical representations, solutions, or methods; and (b)
to prove that a solution is valid or that a method works for all similar cases; and
(c) to write extended explanations of mathematical ideas, solutions, or methods.

We viewed these measures of student work as ascending in cognitive
complexity or demand, and as being more or less reform-oriented, with lessons
focused on practice being the least demanding and most conventional, and lessons
focused on analytic reasoning being the most demanding and most reform-
oriented. In routine lessons, students worked on known ideas within restricted
formats—typically worksheets or textbook problems. In applications lessons,
students were typically solving word problems, and they were doing so by
choosing solution strategies and/or justifying their answers. In lessons built
around analytic reasoning, students were trying to generate mathematical knowl-
edge through methods of proof or analysis.

Analvytic Procedures

Central Tendencies in the Data

The measures just discussed were analyzed in two steps. In the first stage,

we examined central tendencies in the measures using instructional days (i.e., sin-

gle log reports) as the primary unit of analysis. At this stage, the goal simply was
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to estimate the percentage of instructional days in the sample that mathematics
lessons: (a) were focused on particular strands of the elementary school mathe-
matics curriculum or (b) involved engaging students in more or less innovative
and cognitively demanding work. In all of these analyses, data were broken down
by the grade levels under study. The point was to see if patterns of curriculum
coverage and teaching practices in the sample of schools under study resembled
those found in previous analyses of large-scale survey data, and to see if such
patterns varied across grade levels.

Variation in Curriculum Coverage and Teaching Practice

In the next step, a series of three-level, hierarchical, logistic regression
models were estimated to see how patterns of content coverage and teaching
practice varied at three, nested, levels of analysis: instructional days, nested
within teachers, nested within schools (for a discussion of these models, see
Raudenbush & Bryk [2002: Chapter 10]). The purpose of these analyses was to
examine how widely content coverage and teaching practices varied across teach-
ers in the same schools, and across schools in the sample. In addition, we were
interested in explaining variation in these outcomes by incorporating a set of in-
dependent variables into the analyses. For example, when examining variation in
curriculum coverage and instructional practice across days in the sample, we de-
cided to code each log according to the day of the week on which the teaching

occurred (1=Friday, 0 = else), whether or not that day was near a holiday (1=a day
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before, of, or after a holiday; 0 = else), and the number of minutes of math in-
struction occurring that day. Including these independent variables in our statisti-
cal models provided the opportunity to get teacher-level estimates of curriculum
coverage and teaching practice that were adjusted for differences among teachers
in days when logs were completed. At the teacher level of analysis, we decided to
examine how grade level and the number of logs that teachers completed might
affect variation among teachers. To explain variation across schools, we looked
at three sets of school-level variables: (a) a set of dummy variables indexing a
school’s participation in one of the three school reform programs under study; (b)
multi-item scales built from the teacher survey designed to measure the extent to
which a school had a strong academic press, operated under clear standards for
curriculum, and experienced strong pressures for accountability; and (c) demo-
graphic variables, including average levels of student SES and average levels of
mathematics achievement at a school. Appendix C presents descriptive statistics
for all of these variables.

Formal Statistical Models

The formal statistical model used in these analyses was a three-level, hier-
archical, logistic regression model (Raudenbush & Bryk, 2002: Chapter 10).
Level-1 units in this model were the binary measures of curriculum coverage or
teaching practices on a given day of instruction taken from daily logs; level-2

units of analysis were teachers; and level-3 units of analysis were schools.
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Level-1 Model. In the analyses, the level-1 model was a standard logistic

regression model for a Bernoulli outcome with random effects. Here, Y;, was an

indicator taking on a value of 1 if the instructional outcome of interest occurred

on occasion ifor teacher j in school k, and was 0 otherwise. In this model,
;. denoted the probability that Y, =1, where this probability was assumed to
vary randomly across teachers and schools. Therefore, when conditioning on this
probability, we had:
Yij| thjk ~Bernoulli;
E(Yijltik) = ik, and Var(Yiil thj) = k(1 - k)
Because this is a standard logistic regression, we could express this probability in

log-odds (77;, ), where:

Hij )
My =log| —— .
" [1_luijk

This definition had the advantage of making the level 1 statistical model linear in
form by making the dependent variable in the estimation routines 77, , defined as

the log-odds that an instructional outcome of interest occurred on the ith occasion
for teacher j from school k.
The next step in the analysis was to model the log-odds that teacher j from

school k would report an instructional outcome of interest on occasion i as:
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M = Moy + 70, (HOLIDAYS);, + 11, (FRIDAY ), + 17,5, (TIME) ;.. (1)
Here, the indicator variables measuring holiday and Friday, and the continuous
variable measuring instructional time were centered around their respective grand
means so that the following definitions applied to equation (1):

7T, Was the log-odds that teacher j taught a particular curriculum

topic or engaged in a particular teaching practice on an occasion i in
school k after adjusting for the average proportion of Fridays and
holidays and average instructional duration (hereafter called the log-
odds for a “typical” day);

* rmand 1, reflected the adjustments in the log-odds of such an out-
come occurring on a holiday or Friday, respectively, for teacher jin
school k;

* and 7z, reflected the adjustment in the log-odds of this outcome oc-
curring as the amount of time spent on instruction during day in-
creased for teacher j in school k.

Level-2 Model. The level-2 model in these analyses accounted for varia-

tion among teachers within schools on measures of curriculum coverage or in-

structional practice. The teacher mean for a given instructional outcome on a

“typical” day (71, ) was predicted by the overall school mean, the grade level of
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a teacher, and the number of logs submitted by that teacher (or “NBREAK?”), as
in:

Th = ﬁOOk +ﬁ01k (GRADE3)jk +1802k (GRADE4) ik +ﬁ03k(NBREAK)jk +u0jk’

T = Bioks
i = Baoks
T = Baok

Again, the indicator variables measuring grade and the continues variable meas-
uring number of submitted logs per teacher were centered around their respective
grade means so that the following definitions applied to equation (2):
B Was the mean log-odds for first grade teachers, submitting an av-
erage number of logs, in school k having the average proportion of
third and fourth grade teachers who taught a particular curriculum
topic or engaged in a particular teaching practice, assessed for the
“typical” day.
* By and B, were the adjustments in the log-odds of the outcome oc-
curring for third and fourth grade teachers in school k, respectively.
* [k Was the adjustment in log-odds due to the number of logs submit-
ted by a teacher.
In this model, the random effects for specific teachers in a school (ugj) were as-
sumed to be univariate normally distributed with mean zero and within school

variance 7,,, and the variances for 71, , 71, , and 7z;; were fixed.
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Level-3 Model. The level-3 model described variation among schools on
the instructional outcomes of interest. The model for any given instructional out-

come was:

Book =Yoo Voo

Bow = Yoros ®)
Boa = Voo
Boak = Vosos
Biok = Vioos
Book = Vacos
Baok = Vaoo-

where J,,, Was the grand mean for the log-odds of an instructional outcome (after
adjusting for all of the level 1 and level 2 independent variables), where the ran-
dom effects (vook,) for specific schools were assumed to be bivariate normally

distributed with mean zero and between school variance wy,. Vo10s Vooo s Voso s
Yioor Vaoo» @Nd Yoo, Were simply the grand means for the effects of holiday, Fri-
day, instructional time, third grade, fourth grade, and number of logs submitted.
Note that By, Boxs Bosk» Bioks Book» @aNd By, Were fixed in these models,

meaning that we assumed the effects of day, holiday, time, grade level, and num-
ber of logs submitted were the same for all schools.

The careful reader will note that the hierarchical regression models just
described did not include measures of a school’s program participation, or the

variables measuring schools’ socioeconomic composition, or characteristics of the
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schools’ policy environments. As discussed below, hypotheses concerning the
effects of these variables on instructional outcomes were examined in an addi-
tional step in the analysis. Here, the Empirical Bayes estimates of voox for each
outcome were correlated with these independent variables in a bivariate correla-
tion analysis.

Describing Variation in Qutcomes Across Teachers and Schools. The key

point of these analyses was to provide information about the magnitude of varia-
tion in curriculum coverage and teaching practice within and across schools in the
sample. In the analyses presented below, for example, we used the estimated
variance components (Too and o) to describe the percentages of variance lying
within and among schools in the sample. Specifically, the percentage of variance

among teachers within schools was estimated as:

_ T (4)
TOO + wOO

and the percentage of variance among schools as:

_ G (5)
TOO + wOO

These percentages told us something about the relative amounts of varia-

tion in curriculum coverage and teaching practices existing within and between
schools, but they did not tell how large such variation was. For example, 90% of

the variance in the log-odds that some instructional outcome would occur could
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lie among schools, but there still could be only a very small spread across schools
in the actual probability of that outcome occurring. Alternatively, 90% of the
variance in the log-odds of some instructional outcome occurring could lie among
schools, and the spread among schools could be large.

To get a sense of the actual probability that particular outcomes would oc-
cur in different schools, and for different teachers within the same school, we
needed to look at some additional statistics. In particular, using the formulas dis-
cussed in the next two paragraphs, we put a one standard deviation confidence
interval around the estimated grand means for any given instructional outcome,
allowing us to quantify the spread of outcomes around the estimated average for
teachers and for schools. In essence, this analysis focused on the probability that
a particular instructional outcome would occur for teachers who were one stan-
dard deviation above and below their respective school mean in the probability of
teaching a particular topic or using a particular instructional approach, and it fo-
cused on the probability that a particular instructional outcome would occur in
schools that were one standard deviation above and below the grand mean in the
probability that a particular curricular topic was taught or a particular instructional
approach used.

The formulas for these statistics are as follows: The grand mean for a
given instructional outcome (Yooo) Was conditioned at level 1 on Friday, holiday,

and time, and at level 2 on grade 3, grade 4, and NBREAK in our analyses.
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Therefore, yooo, Was the estimated log-odds that an instructional outcome occurred
on a “typical” day, for a first grade teacher who completed the average number of
logs, and who was working in a school having an average proportion of third and
fourth grade teachers (hereafter known as the “average” school). To change this
estimate from a log-odds to a probability, we simply used the formula:

1
1+ eXp(_yooo) .

Then we used the variance in this outcome to estimate the probability that the out-
come occurred on a “typical” day for first grade teachers who were one standard
deviation below the mean in the “average” school in our sample and for the teach-
ers who were one standard deviation above this mean in the “average” school as:

1 1
and )
1+exp(—=(Vooo — Voo ) 1+exp(—=(Vooo + Voo )

respectively.

Similarly, to calculate differences among schools in the probability that a
given instructional outcome occurred, we once again used the adjusted estimate
for a first grade lesson. Here, the probability that a given instructional outcome
occurred on a “typical” day for a first grade teacher in an “average” school one
standard deviation below the grand mean and one standard deviation above the

grand mean on this outcome was estimated as:
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1 1
and ,
1+eXp(_(yooo _\/woo) 1+eXp(_(yooo +\/woo)

respectively. To obtain the probability for the average third or fourth grade les-
son, we simply adjusted the grand mean, Yoo, by the coefficient of grade 3, yo1, or
grade 4, Yoo.

Results

Central Tendencies in Content Coverage

The first step in the analysis was to examine central tendencies in the data.
Table 1, for example, shows the percentage of days that each of the main strands
of the mathematics curriculum were taught for the samples of days at each grade
level in the data set. The reader is reminded that the total percentage of time de-
voted to coverage across all of these content areas can sum to more than 100% at
any grade level in this table, since teachers often taught more than one curriculum

strand on a given day of instruction.

The data show that in the 53 schools under study, the mathematics cur-
riculum was focused squarely on number concepts and operations. At all grade
levels, operations were taught on about 40% of days, while number concepts were

taught from 24% to 32% of days, depending on the grade level. In an analysis not

32

(5)



shown here, we found that when one of these topics was taught, the other was
taught on about 36.5% of occasions. Overall, this same analysis showed that 51%
of all instructional days in the sample included instruction on number concepts,
operations, or both topics.

Not surprisingly, Table 1 also shows that other topics in the mathematics
curriculum were taught much less frequently than number concepts and opera-
tions. In first grade, students were taught about money, time, and the calendar
with some regularity—about 30% of all school days in the sample. But attention
to this topic fell off sharply in the third and fourth grades, as expected. Other-
wise, attention to all other topics in the mathematics curriculum was spread thinly
across a large number of topics at all grade levels. Thus, at all grade levels except
first, no topic other than number concepts or operations was taught more than
10%-15% of all days.

Table 2 presents additional data on the mathematics curriculum. Panel
one of the table presents data on the percentage of days when whole numbers,
decimals, or fractions were taught, for lessons when number concepts and/or op-
erations were the focal topic(s). Panel two presents data on the percentage of op-
erations lessons focused on particular number types. Once again, the percentages
within each panel of Table 2 can add to more than 100% (since lessons can focus

on more than one kind of number or operation).
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In line with previous research, panel one of Table 2 suggests a strong em-
phasis on whole numbers in the schools under study. In first grade, 92% of les-
sons on number concepts and/or operations focused on whole numbers; at third
grade that figure declines to 82%, and in fourth grade the figure is 76%. This de-
cline coincides with a gradual increase in the attention given to decimals and
fractions across grade levels, with 27.5% of number concepts and/or operations
lessons in fourth grade covering fractions and 20.5% covering decimals. Thus, as
expected, new number types are introduced at successive grades, but even at
fourth grade, panel one of Table 2 shows that the teaching of number concepts

and/or operations remained focused largely on whole numbers.

The continuing emphasis on whole numbers shown in panel one of Table
2 raises questions about the potentially slow pace of instruction in the schools un-
der study, and about a possible redundancy in content coverage. But there might
be sound reasons for the continuing emphasis on whole numbers shown in the ta-
ble, even at the higher grade levels. For example, while students are working
with single digit whole numbers, they might also begin to work with multi-digit
whole numbers. Building further, new operations (e.g., multiplication and divi-
sion) are introduced as students progress across grade levels, and the introduction

of new operations might necessitate a continuing emphasis on whole numbers.
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The data in panel two of Table 2 provide some evidence on these specula-
tions, showing how much emphasis was given at particular grades to teaching op-
erations involving a particular type of number, where the percentages are based
only on days when operations were taught. Here, we see that first grade opera-
tions lessons were focused largely on addition and subtraction with whole num-
bers, and rarely on other operations or numbers. In third and fourth grade, by
contrast, students were working on multiplication and division with whole num-
bers, even while continuing to place considerable emphasis on addition and sub-
traction with whole numbers. Panel two of Table 2 also shows that the percentage
of lessons focused on fractions and decimals increased in the later grades.

While panel two of Table 2 shows how the operations curriculum ad-
vanced in the elementary grades in the schools under study, it also provides some
evidence of redundancy and “crowding” in the operations curriculum — especially
at the upper grades. With respect to redundancy, panel two of Table 2 shows that
students in third and fourth grades continued to work on addition and subtraction,
even as they moved to work on multiplication and division. Moreover, the data
show that students continued to work on addition and subtraction problems with
whole numbers, even as they learned to work with fractions and decimals. When
we probed the data further to see if the continuing emphasis on addition and sub-
traction with whole numbers was due to an emphasis on multi-digit computations,

we found that third graders’ work on addition or subtraction problems involved
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single digit whole numbers about 65% of the time, and multi-digit whole numbers
about 35% of the time. By fourth grade, the ratio of single-digit to multi-digit
whole numbers was closer to 50/50. But that still suggests a continuing emphasis
on fairly simple addition and subtraction problems in third and fourth grades.
Panel two of Table 2 not only provides evidence of a level of redundancy
in the operations curriculum, but also shows an increase in the number of topics
being covered in the higher grades of the schools under study. For example, third
and fourth graders in this study were working not only on addition and subtraction
with single- and multi-digit numbers, but also on the addition and subtraction of
fractions and decimals (albeit at much lower frequency than whole numbers).
This was true even as they began to multiply and divide both single and multi-
digit whole numbers, fractions, and decimals (again at lower frequencies). This
progressive “crowding” in the operations curriculum was particularly noticeable
in the transition from third to fourth grade, where the amount of attention given to

each operation/number combination increased.

Central Tendencies in Teaching Practice

The next step in the analysis was to examine central tendencies in teaching
practice. These data are presented in Table 3. Panel one of this table shows the
percentage of days when number concepts and operations were taught with the
lesson being characterized as involving direct teaching. Also, for days that in-

cluded direct teaching, Table 3 shows the percentage of days when a teacher fo-
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cused on material already introduced to students, on new material, or one some
combination of these. The main finding is that on roughly 73% of the days when
number concepts and operations were taught, direct teaching occurred, and of
these days, almost 70% focused on material previously introduced to students.
Panel two in Table 3 shows the percentage of days when number concepts and
operations were taught that included student work at different levels of cognitive
demand. Here, we see that about 78% of these days involved practice, almost
20% involved applications, and only about 3% involved analytic reasoning. So,
the “cognitive demand” of number concepts and operations lessons was low on

the vast majority of days.

To review, the data in Table 3 suggest that teacher-directed instruction,
practice, and the review of previously covered material dominated instructional
practice in the schools under study. The reader is cautioned, however, that the
results presented in Table 3 might underestimate the real diversity of lessons ex-
perienced by students. To demonstrate this, we developed an alternative way of
looking at the teaching practice data. Here, we created an empirically exhaustive
cross-classification of lessons along the three dimensions of teaching practice

measured in this study—whether or not a day of instruction included direct
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teaching; whether that day focused on previously-introduced content, new con-
tent, or some combination; and whether a day of instruction involved practice on
routine tasks, applications, or analytical reasoning. Table 4 shows the results of
this analysis, which clustered days of instruction on number concepts and opera-
tions into the 31 distinct, non-overlapping instructional configurations that existed

in the data.

The data in Table 4 show that the most frequently occurring instructional
configuration at each grade level included a combination of teacher-directed in-
struction, a focus on material previously introduced, and students engaged in
practice. This is the lesson configuration usually seen as dominant in U.S.
mathematics education. Overall, however, only about 36% of the days focused on
number concepts and operations took on this configuration. Strikingly, the next
most common configuration was one in which students were engaged in practice
without any direct teaching. In fact, this configuration comprised nearly 17% of
the days when number concepts and operations were taught. Otherwise, no other
instructional configuration was present on more than 10% of the remaining days
of instruction. In summary, this way of looking at the data suggests that just two

forms of instruction were distributed across about 53% of all number concepts
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and operations days, while the other 29 configurations were distributed across the
remaining 47% of days.

Variation in Content Coverage

To this point, we have focused on central tendencies in content coverage
and teaching practice in the 53 schools under study. But analyses of central ten-
dencies often underplay the extent of variation that exists in educational practices
across teachers and schools, and they tell us nothing about how large this varia-
tion may be. As a result, we turned to that problem in a second stage of the analy-
sis.

Tables 5 and 6 explore variation in curriculum coverage and teaching
practice across the schools and teachers in the sample. The tables are based on
estimates from the three-level, hierarchical logistic regression models discussed
earlier, where the dependent variables were dichotomous measures of content
coverage and teaching practice. All of these models were estimated using the
computing package HLM/HGLM 5.0 authored by Raudenbush, Bryk, Cheong,
and Congdon (2002). The reader will recall that these analyses provided esti-
mates of the log likelihood of an instructional outcome for the average first-grade

teacher in the “average” school on a “typical” day of instruction.
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Table 5 reports on the variance decomposition and reliabilities for the in-
structional outcomes pertaining to patterns of curriculum coverage. Then, in Table
6, estimates of the several different coefficients reported by the HGLM computing
package are presented, having been translated from the log-odds metric reported
by the computing program into probabilities (original analyses on which these
tables are based are available from the authors by request). The purpose of con-
structing Table 6 was to provide an intuitive sense of the magnitude of differences
in content coverage that existed across schools, teachers, and grade levels in the
current sample. Keeping the focus squarely on the “core” of the elementary
school mathematics curriculum, Table 6 focuses only on the probability that num-
ber concepts and operations were taught in the schools, and only on the probabil-
ity that different operations with whole numbers were taught. Readers interested
in the results for all curricular topics in the log can request the data from the
authors.

In general, Table 5 shows that there is far more variation in content cover-
age within schools than across them, even after taking into account the grade level
of teachers. For example, the percentage of variance lying within schools in the
log-odds that number concepts was taught was 82.1%; that percentage of variance
was 89.8% for operations, 92.3% for addition with whole numbers, 90.6% for
subtraction with whole numbers, 94% for multiplication with whole numbers, and

87.5% for division with whole numbers. Clearly, almost all of the variation in
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content coverage was among teachers within schools (even after controlling for
grade) rather than across schools.

Further, the reliabilities listed in Table 5 show that, for the most part, we
could discriminate quite reliably among first grade teachers in patterns of content
coverage, but less reliably among schools. For example, teacher level reliabilities
for oo were in the range of .77 to .87 for all but two curricular topics in the table
(namely, multiplication and division, which first grade teachers rarely taught),
suggesting that our estimates of content coverage for a particular teacher were
quite reliable. But the table also shows that we did not have the same level of dis-
crimination among schools, for here, the reliabilities for ayo were in the range of
.27 to .63. Overall, of course, these lower school-level reliabilities simply reflect
the fact that it was very difficult to discriminate reliably across units of measure-
ment (i.e., schools) when variance in the outcomes being measured varied so
much within these units (i.e., across teachers).

Table 6 also provides information on just how large the differences in
content coverage were among teachers in the same school and across schools.

For example, the table shows that the typical first grade teacher in the “average”
school had a 22.8% chance of teaching number concepts on a “typical” school
day. If that same teacher was working in a school a standard deviation below the
mean in the random distribution of school effects, she would have a 13.6% chance

of teaching number concepts, while if she was in a school a standard deviation
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above the mean, she would have about a 35.6% chance of teaching number con-
cepts. Meanwhile, within the “average” school, a first grade teacher at the mean
of the teacher distribution once again had a 22.8% chance of teaching number
concepts. A teacher a standard deviation below the mean in this same school,
however, had just a 7.2% chance of teaching number concepts, and a teacher a
standard deviation above the mean had a 53.1% chance. So, differences among
teachers within the same school were clearly large, and as Table 6 shows, sub-
stantially larger than differences among average teachers working in different
schools. Incidentally, in the example just cited, there were no differences among
teachers due to grade.

Looking at the remaining columns for content coverage in Table 6, we see
much the same story—modest differences among the average teachers in different
schools, but substantial differences among teachers within the same school, even
among teachers at the same grade level. This was especially noticeable when we
examined the likelihood of teaching different operations with whole numbers, the
main focus of the elementary school curriculum. For example, Table 6 shows that
the average first grade teacher working in a school one standard deviation above
the mean in the distribution of random school effects differed by about 6-7 per-
centage points in the probability of teaching addition with whole numbers as
compared to the average teacher in a school a standard deviation below the mean

of school effects. But within the “average” school, first grade teachers a standard
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deviation above and below the mean of the distribution of random teacher effects
differed by about 25 percentage points in their probability of teaching addition
with whole numbers. That translates into a difference of more than a day a week
across teachers at the same grade level in the same school—a striking number
considering that this is the central topic of mathematics education in first grade.
As the table shows, this difference declined among teachers within the same
school at higher grades, but that was largely because their likelihood of teaching
addition with whole numbers declined.

As another example, consider the likelihood that teachers taught multipli-
cation with whole numbers. Here, there were huge differences among teachers
within schools, especially at the upper grades (the estimate of between-school dif-
ferences for this particular topic is small in Table 6 because the intercept on which
it is based describes differences among first grade teachers, who do not teach
much multiplication). For example, two teachers at the upper grades, a standard
deviation above and a standard deviation below the mean within the same school,
differed by as much as 30% in their likelihood of teaching multiplication with
whole numbers. Again, this is a striking difference, translating into a difference
of more than a day per week in the teaching of a core mathematics topic for two
teachers at the same grade level within the same school.

As a final step in this analysis, we ran an exploratory analysis in which we

correlated the school-level, Empirical Bayes (EB) residuals from each regression
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model with the school-level independent variables discussed earlier. None of
these variables had a statistically significant correlation with the EB residuals in
any model, suggesting that patterns of content coverage across schools in this
sample were not systematically related to school SES or minority composition,
academic press, standards or accountability pressures, or to participation in one of
the comprehensive school reform programs under study.

Variation in Teaching Practices

Tables 5 and 6 also show the results for an analysis of variation in teach-
ing practices. Again, the statistical model from which the tables were constructed
was a three-level, logistic regression model that included the same set of inde-
pendent variables used in the model for content coverage. However, in this
analysis, the sample consisted of the 10,257 days when 502 teachers in the sample
taught either number concepts or operations. Once again, the computing package
estimated the log-odds that a first grade teacher was engaged in particular kinds of
instruction on the “typical” day. We then used this to estimate differences among
teachers across schools in the sample, and among teachers within and across
grades in the same school using the grand means, which are for first grade teach-
ers in the “average” school. As mentioned earlier, Table 6 translated these esti-
mated log-odds into probabilities for reporting purposes.

The findings on teaching practices in Tables 5 and 6 were similar to those

reported for content coverage. A greater percentage of variance in teaching prac-
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tice was among teachers within the same school than across schools, even after
taking grade into account. The percentage of variance in teaching practice lying
among teachers in the same school was 84.5% for direct-teaching, 74.2% for stu-
dent work involving practice, 85.5% for student work on applications, and 77.1%
for analytical reasoning. Given these variance components, reliabilities for 70
were generally larger than for o, for the same reasons cited in our discussion of
reliabilities of measures of content coverage.

The next step in the analysis was to get a sense of the magnitude of varia-
tion in teaching practices within and across the schools under study. Table 6
shows that the likelihood that a teacher engaged in direct teaching did not vary
across grades. So, the average teacher in a school a standard deviation below the
mean of schools differed from an average teacher in a school a standard deviation
above the mean by about 20 percentage points, where the mean for direct teaching
was 79.4%. Meanwhile, within the “average” school, two teachers a standard de-
viation on either side of the school mean differed by over 40 percentage points (or
two days a week of instruction) in their likelihood of engaging in direct teaching.
Findings for the other teaching practice variables in Table 6 are similar to this,
showing greater differences within schools than across them, and once again,
showing that differences among teachers within the same school were largest

when a practice was frequent.
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To conclude this discussion, recall that we ran an exploratory analysis cor-
relating the school-level, Empirical Bayes (EB) residuals from each regression
model with the school-level independent variables considered in this paper. Once
again, none of these variables had a statistically significant correlation to any of
the EB residuals, suggesting that patterns of teaching practice across schools in
this sample were not systematically correlated to school SES or minority compo-
sition, academic press, standards or accountability pressures, or participation in
one of the comprehensive school reform programs under study.

Discussion

The findings of this study both confirm and build on results from previous
studies of mathematics education in American elementary schools. The data pre-
sented here show that in the average elementary school in this sample, mathe-
matics instruction was focused largely on whole number concepts and operations.
Moreover, the data presented in this paper suggest a measure of redundancy and
crowding in the average school’s mathematics curriculum—especially in the
teaching of operations. Students in first grade in such a school worked mostly on
the addition and subtraction of whole numbers, but students in fourth grade also
were adding and subtracting whole numbers, even as they were learning to add
and subtract fractions and decimals and to multiply and divide whole numbers.
However, we should be careful not to over-emphasis these central tendencies in

curriculum coverage, for another important finding of this study was that a great
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deal of variation existed in patterns of content coverage among teachers within the
same school, even when these teachers worked at the same grade level. Hence,
while schools (on average) did not differ much in terms of curriculum coverage,
teachers within schools did vary greatly.

The data presented here also were consistent with previous assertions
about modal patterns of mathematics teaching practices in American elementary
schools. As in previous research, we found the modal pattern of mathematics
teaching at all grades to be characterized by teacher-directed lessons accompanied
by seatwork involving routine ideas. But, in the data reported here, this modal
teaching configuration occurred for only 36% of the operations and number con-
cepts lessons observed in this study. So, while the modal lesson in the schools
under study was the one that previous research on mathematics education has
found to be dominant, it is also the case that instruction in the schools studied here
was conducted in many other configurations. More importantly, there was a great
deal of variation in the extent to which teachers used particular teaching prac-
tices—even among teachers working in the same school.

All of this suggest a need for researchers to be more cautious when re-
porting central tendencies about mathematics teaching practices in American ele-
mentary schools. For one thing, our data suggest that discussions about the “typi-
cal” content focus (on whole number concepts and operations) and the “com-

mon” lesson configuration (of teacher-directed lessons accompanied by seatwork
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involving routine practice of known ideas) can mask the real and wide distribution
of these practices among teachers—even those who work at the same grade level
in the same elementary schools. So, while we can easily report central tendencies
in the data, these central tendencies might not be the most striking fact about
mathematics instruction in elementary schools. Instead, variation in teaching
practices might be.

To examine this problem, we developed a strategy to quantify the magni-
tude of variation in curriculum coverage and instructional practice among teachers
and across the schools. In doing so, we found that curriculum coverage varied
less widely across schools than it did among teachers within the same school, and
that teachers working at the same grade level varied widely in patterns of content
coverage and teaching practice—upwards of a day a week in their coverage of the
main topics taught in elementary schools, and more than a day a week in their use
of the most common teaching practice. Care should be taken in generalizing these
findings to teacher-to-teacher variation across all subjects or teaching practices,
however, for variation among teachers appears to be largest when a particular
topic is taught frequently or a particular instructional practice is widely used and
declines for topics that are taught infrequently or for practices that are used infre-
quently. This point is obvious, of course, but it is relevant to future discussions of
mathematics education in elementary schools, for the most frequently covered

curriculum topics, and the most frequently used teaching practices are the very
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ones that have drawn all the attention in discussions of mathematics education in
American elementary schools. Put differently, those practices which previous ar-
guments see as “typical” of American elementary schools are also those that show
the most variation.

For this reason, we set out in this paper to look carefully at patterns of
variation in curriculum coverage and teaching practice, both within and across
schools. Overall, the findings in our data left us puzzled. Clearly, our data sug-
gest that there is a great deal of variation in mathematics instruction in American
schools, but the data do little to explain why instruction varies so little across
schools and so much within schools. Of course, the findings of wide variation in
mathematics teaching practices and curricular coverage have characterized large-
and small-scale research on mathematics teaching in elementary schools in the
United States for over a decade, but we and others have no ready explanation for
these findings. Perhaps an implicit and not very well-defined “national” curricu-
lum exists in the domain of elementary school mathematics, one that is organized
by deeply held beliefs about appropriate instruction at various grade levels, but
beliefs that are in fact quite fuzzy and that get enacted quite variably by the
loosely supervised teachers working in American schools.

That is certainly the common argument in educational research, but we
had hoped to find alternative explanations for variation in teaching practices and

curriculum coverage. We especially thought two classes of variables would help
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explain patterns of variation in the data. First, we thought we would see large
grade level effects on teaching practice and curriculum coverage. In fact, we did
find grade-level effects on curriculum coverage and (to a lesser extent) teaching
practice, as shown in Tables 5 and 6, but in variance components analyses not
shown here, we found that even grade level effects did not account for more than
a few percentages of variance in our outcomes. Therefore, other explanations for
differences among teachers within schools will have to be sought in future re-
search.

Second, we thought that various features of local schools might account
for variation in patterns of content coverage and teacher practice, including the
academic norms of faculty, accountability pressures, and student composition.
But none of the school-level variables studied here bore any significant relation-
ship to the outcomes of interest. So, here too, better models of school-to-school
differences in instructional practice seem needed to explain the small differences
that exist among elementary schools in mathematics education practices.

In this regard, we were particularly struck by the lack of effects that the
different whole-school reform programs under study had on patterns of mathe-
matics curriculum coverage and teaching practice, especially given the assertions
by school leaders in the sample about the centrality of mathematics education in
their school improvement plans. To be sure, none of the comprehensive school

reform models studied in this paper placed as strong an emphasis on the im-
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provement of mathematics in the schools studied here as they did on improving
reading and language arts instruction. But each school reform program did have
strategies in place to effect changes in mathematics instruction in schools. Fur-
ther, leaders within all schools in the sample reported being actively engaged in
the improvement of mathematics instruction or curriculum. In this sense, the
contrast between the results presented in this paper and those obtained for patterns
of reading and writing instruction in the same schools is interesting (Rowan et al.,
2002; Correnti, Rowan, & Camburn, 2003). In the 53 schools studied here, very
large differences were found among schools participating in the different reform
models in both the amount and nature of literacy instruction. Perhaps the atten-
tion to improving literacy instruction in these schools worked against the im-
provement of mathematics instruction; or perhaps the school improvement models
under study simply were not specific or intensive enough to create important dif-
ferences among schools in their mathematics programs.

Whatever the explanation, the results presented here seem to point to
something important about trends in comprehensive school reform, at least as it
proceeds with schools working with the CSR programs under study. Those
schools in the sample that were working with a CSR program did not appear to be
breaking away from the conventional patterns of mathematics education that re-
searchers have remarked upon for decades; and although this might change as the

schools become more experienced with these programs, it seems safe to conclude
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that in the early stages of program implementation, the CSR models under study
in this paper did not appear to be “breaking the mold” of conventional mathemat-
ics education in elementary schools. The typical central tendencies in mathemat-
ics education practices were still visible in the schools under study, and the same
wide variation in practices from teacher to teacher in the same school still existed.
In closing, we think it is important to consider the consequences of our
findings for students. The usual discussion of mathematics education in the
United States focuses on central tendencies—in both instructional practice and
student achievement. What we have been arguing, however, is that there is con-
siderable variation in content coverage and teaching practice among teachers
within the same school, even when these teachers work at the same grade level.
This suggests that students in the same school end up experiencing widely differ-
ing mathematics instruction, not only at any given grade level, but also as they
proceed across the grades. Thus, students do not simply experience mathematics
instruction that is slowly paced and redundant. They also experience widely
varying instructional programs in the same school, both at the same grade level,
and as they move across the grades. What we do not know from the analyses pre-
sented here are the consequences for students’ learning of these varying curricular
and instructional trajectories. Research on this important issue is the next step in
our research agenda involving the use of instructional logs to investigate patterns

of mathematics education in elementary schools.
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Appendix A

Descriptive Statistics for School Demographic Variables

Variable N  Mean SD
Total Enrollment in Districts 53 54,755 76,749
Total Enrollment in Schools 53 457 164
Community Disadvantage Index 53 0.659 1.076

Percent of Students Eligible for Free/Reduced Lunch in Schools 53  72.6 22.3

Percentage of White Students in Schools 53 230 28.4
Percentage of African-American Students in School 53 52.6 39.7
Percentage of Hispanic Students in Schools 53 144 26.3
Percentage of Asian Students in Schools 53 9.0 23.2
Percentage of American Indian Students in Schools 53 0.75 2.9
Average Math Scale Score (TerraNova) 53 5319 20.2
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Appendix C

Descriptive Statistics for Independent Variables

Independent Variables

N Mean SD

Lesson
Proportion of Days that are Holidays
Proportion of Days that are Friday
Time of Lesson (In Minutes)
Teacher
Proportion of Teachers - Grade One
Proportion of Teachers - Grade Three
Proportion of Teachers - Grade Four
Average Number of Logs Completed By Teachers
School
Percent of Students Eligible for Free or Reduced Lunch
Percent Minority Students (African-American & Hispanic)
Level of Academic Press
Level of Accountability Pressure
Extent of Performance Standards

Proportion of Schools Participating in a WSR Model

19,999  0.05 -
19,999  0.19 -

19,999 49.29 29.61

509 0.32 -
509 0.39 -
509 0.29 -

509 39 19.9

53 72.6 22.3

53 66.9 32.8

53 -0.0009 0.294

53 0.069 0.838

53 -0.186 1.064

53 0.87 -
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Table 1

Percentage of Days when Mathematics Curriculum Strands were Taught (n=19,999 days)

Grade
Content Strand 1% Grade 3" Grade 4™ Grade
Number Concepts 30.5% 24.9% 32.7%
Operations 39.5% 40.0% 41.9%
Patterns, Functions, Algebra 14.3% 7.4% 10.9%
Money, Time, Calendar 29.3% 9.3% 8.6%
Represent/Interpret Data 15.4% 12.5% 14.0%
Geometry 10.9% 10.8% 10.9%
Measurement 10.6% 10.8% 11.1%
Probability 2.4% 3.9% 5.9%
Percent, Ratio, or Proportion 0.6% 1.4% 3.2%
Negative Numbers 0.3% 0.5% 1.0%
Other Content 2.3% 2.6% 4.7%
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Table 2

Percentage of Days when Number Types or Operations with Number Type were Taught

Grade

Panel One — Number Type (n=10,257 days) 1" Grade 3" Grade 4" Grade
Whole Numbers 91.8% 82.4% 76.2%
Decimals 0.7% 8.5% 20.5%
Fractions 8.8% 18.7% 27.5%

Panel Two - Operation and Number (n=8,098 days)
Addition with Whole Numbers 75.7% 25.7% 32.8%
Addition with Decimals 0.4% 4.3% 13.3%
Addition with Fractions 2.9% 5.0% 13.0%
Subtraction with Whole Numbers 58.8% 26.6% 29.8%
Subtraction with Decimals 0.3% 3.8% 12.8%
Subtraction with Fractions 2.3% 3.1% 10.6%
Multiplication with Whole Numbers 1.0% 55.6% 56.7%
Multiplication with Decimals 0.0% 2.2% 12.2%
Multiplication with Fractions 0.0% 3.8% 10.1%
Division with Whole Numbers 0.3% 32.9% 38.3%
Division with Decimals 0.0% 1.6% 10.4%
Division with Fractions 0.2% 3.5% 9.5%
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Table 3

Percentage of Days When Number Concepts and Operations Are Taught That Include

Particular Teaching Practices and Types of Student (n=10,257 days)

Percentage of Percentage of

Number Concepts  Direct Teaching

and Operation Lessons
Lessons
Panel One: Teaching Practices
Direct Teaching 73.2%
With Known Ideas Only 69.8%
With New Ideas Only 6.0%
With Both Known Ideas and New ldeas 14.1%
Ideas Covered During Lesson Not Identified 10.1%
Panel Two: Student Work
Practice 78.1%
Applications 19.9%
Analytic Reasoning 3.3%
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Table 4

Classification of Number Concept and Operation Lessons Along the Three Dimensions of Teaching Practice (n=10,257 days)

Cluster Description Percent of
Lessons
Direct Teaching with Known Ideas and Practice 36.38
No Direct Teaching and Practice 16.67
Direct Teaching with Known Idea and Practice and Applications 9.19
Lessons Not Categorized by Teacher Engagement, Pacing of Content, or Nature of Students” Academic Work 6.81
Direct Teaching with Known Ideas/Introduce New Idea and Practice 5.42
Direct Teaching with Ideas Unknown 4.93
Direct Teaching with Known ldea 3.08
Direct Teaching with Known Ideas/Introduce New Idea and Practice and Applications 2.96
Direct Teaching with Introduce New ldea 2.82
No Teacher and Practice and Applications 2.13
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Table 4 (Continued)

Classification of Number Concept and Operation Lessons Along the Three Dimensions of Teaching Practice (n=10,257 days)

Cluster Description Percent of
Lessons
Direct Teaching with Ideas Unknown and Practice 1.55
No Direct Teaching and Applications 1.09
Direct Teaching with Known Ideas/Introduce New Idea and Practice and Analytic Reasoning and Applications 1.03
Direct Teaching with Introduce New ldeas and Practice 0.97
Direct Teaching with Known Idea and Practice and Applications and Analytic Reasoning 0.91
Direct Teaching with Known Idea and Applications 0.86
Direct Teaching with Ideas Unknown and Applications 0.70
Direct Teaching with Known ldeas/Introduce New ldea 0.51
Direct Teaching with Known Idea and Practice and Analytic Reasoning 0.41
Direct Teaching with Introduce New Idea and Applications 0.21
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Table 4 (Continued)

Classification of Number Concept and Operation Lessons Along the Three Dimensions of Teaching Practice (n=10,257 days)

Cluster Description Percent of
Lessons
Direct Teaching with Known Idea and Applications and Analytic Reasoning 0.20
Direct Teaching with Introduce New ldea and Analytic Reasoning 0.17
Direct Teaching with Known Ideas/Introduce New Idea and Applications 0.16
Direct Teaching with Ideas Unknown and Practice and Applications 0.14
Direct Teaching with Introduce New Idea and Practice and Applications 0.11
Direct Teaching with Known ldea/Introduce New Ideas and Applications and Analytic Reasoning 0.11
Direct Teaching with Known Idea and Analytic Reasoning 0.08
Direct Teaching with Known Idea and Analytic Reasoning 0.06
Direct Teaching with Known Idea/Introduce New Ideas and Practice and Analytic Reasoning 0.06
Direct Teaching with Known Ideas/Introduce New ldea and Analytic Reasoning 0.05
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Table 4 (Continued)

Classification of Number Concept and Operation Lessons Along the Three Dimensions of Teaching Practice (n=10,257 days)

Cluster Description Percent of
Lessons
Direct Teaching with Introduce New Ideas and Applications and Analytic Reasoning 0.05
Direct Teaching with Introduce New ldea and Practice and Analytic Reasoning 0.04
No Direct Teaching and Analytic Reasoning 0.04
No Direct Teaching and Practice and Applications and Analytic Reasoning 0.03
No Direct Teaching and Practice and Analytic Reasoning 0.03
Direct Teaching with Known Idea and Practice and Applications and Analytic Reasoning 0.03
Direct Teaching with Introduce New Ideas and Practice and Applications and Analytic Reasoning 0.02
No Direct Teaching and Applications and Analytic Reasoning 0.02
Total Percent of Number Concept and Operation Lessons 100.00
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Table 5

Variance Decomposition of Content Coverage and Teaching Practices

Among Classrooms Among Schools, ayo

within Schools, 15

Percent  Reliability Percent  Reliability

Variance Variance
Content (n=19,999 days)
Number Concepts 82.1% 871 17.9% .628
Operations 89.8% 827 10.2% 461
Addition with Whole Numbers 92.3% 782 7.7% 373
Subtraction with Whole Numbers 90.6% 776 9.4% 425
Multiplication with Whole Numbers 94.0% .645 6.0% 278
Division with Whole Numbers 87.5% .584 12.5% 429
Teaching Practices (n=10,257 days)
Direct Teaching 84.5% 761 15.5% 552
Practice 74.2% .700 25.8% .678
Applications 85.5% 735 14.5% 525
Analytic Reasoning 77.1% 424 22.9% 504
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Table 6

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD
Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in
Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too

Content (n=19,999 days)
Number Concepts? 136 228 .356 072 228 531

Operations® .296 381 474 .166 381 .655
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD

Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in

Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too
Addition with WN .081 A1 148 - - -

First Grade - - - .037 11 .286
Third Grade - - - .0008 025 076
Fourth Grade - - - 011 .036 107
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD

Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in

Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too
Subtract with WN .068 .096 134 - - -

First Grade - - - .032 .096 253
Third Grade - - - 011 .036 105
Fourth Grade - - - .013 041 12
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD

Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in

Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too
Multiply with WN 028 .038 .052 - - -

First Grade - - - 011 .038 122
Third Grade - - - .626 .853 952
Fourth Grade - - - 672 876 961
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD

Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in

Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too
Division with WN .007 .013 021 - - -

First Grade - - - .003 013 .049
Third Grade - - - 412 739 92
Fourth Grade - - - 525 817 948
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD
Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in
Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too

Practice (n=10,257 days)
Direct Teaching” .690 794 .869 517 794 933

Practice” 713 .826 .900 .614 .826 934
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD

Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in

Mean Average School Mean Average School  Average School Average School

Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too
Applications .069 120 201 - - -

First Grade - - - .030 120 376
Third Grade - - - .046 77 487
Fourth Grade - - - .062 227 564
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Table 6 (Continued)

Probabilities of Coverage of Selected Mathematics Content and Teaching Practices

Between School Model Within School Model

Probability for Probability for  Probability for ~ Probability for Probability for ~ Probability for

School One SD Average School One SD  Teacher One SD Average Teacher One SD
Below Grand Teacher in Above Grand  Below Mean in Teacher in Above Mean in
Mean Average School Mean Average School  Average School Average School
Yooo - o Yoo Yoo + o Yoo - Too Yoo Yoo + Too
Analytic Reasoning® .001 .002 .008 - - -
First Grade - - - .000 .002 024
Fourth Grade - - - .001 011 102

% No grade difference in probability that topic is taught.
® No grade difference in probability of teaching practice occurring.
°No difference in probability of teaching practice occurring between first and third grade.
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