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Abstract 

In recent years, scholars have problematized terms used to describe instruction on 

teacher survey instruments.  When scholars, observers, and teachers employed terms 

like “discuss” and “investigate,” these authors found, they often meant to describe quite 

different events (Mayer 1999; Spillane & Zeuli 1999; Stigler, Gonzales, et al, 1999). This 

paper problematizes another set of terms often found on survey instruments, those 

describing mathematical content.  To do so, it examines terms such as “geometry,” 

“number patterns” and “ordering fractions” for rates of agreement and disagreement 

between teachers and observers participating in a field pilot of an elementary 

mathematics daily log.  Using interviews, written observations, and reflections on 

disagreements, this paper is also able to ask why disagreements occurred.  Sources of 

disagreement included problems with instrument design, memory/perception, and, 

notably, differences in the way language is used in different communities – university 

mathematicians, elementary teachers, and mathematics educators – to give meaning to 

subject matter terms.  Theoretical and practical implications of these sources of 

disagreement are explored.  
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In recent years, scholars have used large-scale survey techniques to gauge the 

effectiveness of reform efforts, professional development initiatives, and other 

interventions into the teaching and learning process (e.g. Colleague & Author, 

2000,2001; Garet, Birman, et al 2001; Mayer 1999; Porter,  Floden, et al 1996; Spillane 

& Zeuli, 1999; Stecher & Chun, 2000; Supovitz & Turner, 2000).  Compared with past 

efforts to evaluate such programs and initiatives, survey instruments offer many 

benefits: the ability to gather data on a large number of lessons; the possibility of 

providing accurate population estimates for particular activities, and exploring 

relationships among policy, school environments, and teachers’ practice; and the 

capacity to focus on instruction as reported by teachers.  However, survey techniques 

also suffer from concerns about validity -- that is, the question of whether teachers’ 

reports on survey instruments accurately represent their actual classroom practice.  

 

One problem with the use of surveys is that they rely on words and phrases to describe 

instruction -- yet in the U.S., at least, language for instruction is underdeveloped and 

imprecise, and definitions can vary across communities which use those words or 

phrases. For instance, scholars have documented variations in meaning when words like 

“investigate” or “discuss” are used to represent particular methods of classroom work 

(Mayer, 1999; Spillane and Zeuli, 1999; Stigler, Gonzales, et al, 1999).  Scholars have 

less frequently examined the validity of teachers’ interpretations of terms associated 

with subject matter itself – e.g., in mathematics, "proof," "patterns," or "procedures.” 

Because of the importance of such terms within educational research today, and 
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because the possibility exists that instruments measuring teachers’ content coverage 

might be improved, this paper hopes to clarify why validity problems arise in the use of 

content terms on survey instruments.  

 

To do so, this paper presents an analysis of data produced during a pilot of a daily 

mathematics log, a survey instrument which gave elementary school teachers and 

observers the opportunity to report on both broad content coverage (e.g., basic facts, 

geometry, fractions, algebraic reasoning) and finer content breakdowns for a limited 

number of topics.  Some of the log’s terms (e.g., geometry, algebra) are used by 

university mathematicians to demarcate particular fields of study and analysis; others 

(e.g., inequalities, ordering fractions) are mathematical terms, but used most often by 

teachers and others to specifically describe elementary school mathematics; still others 

(e.g., problem solving, number patterns) have been introduced or redefined by 

mathematics educators seeking to improve school mathematics.  By analyzing how 

instrument writers, teachers, and classroom observers used the log during this field 

trial, we argue that terms describing mathematical content cannot be taken for granted 

as an agreed-upon lexicon in U.S. classrooms.  We explore reasons for disjunctures, 

then comment on theoretical and practical implications of this problem. 

.  

Measuring Instructional Content 
 

Most studies designed to validate teacher survey instruments, including daily logs, have 

focused on teachers’ use of specific instructional practices –– for example, teachers’ use 
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of small group work, manipulatives, or discussion.  These studies have reported mixed 

results. Mayer (1999) found that observed and self-reported composite teacher scores 

on measures of reform mathematics teaching correlated highly, at .85. While teachers 

inflated their self-reports of NCTM-aligned approaches to mathematics teaching, they 

did so systematically, maintaining their position relative to one another on the scales. 

Burstein, McDonnell, and other researchers at RAND (1995) found that survey data on 

instructional processes can provide an accurate picture of teachers’ classroom practices.  

However, they also argued that this accuracy derived from the conventional and stable 

nature of teachers’ practice, for the teachers whom they studied relied extensively on 

lecture and homework review, and reported little variation in their practices.   Studies 

by Stigler, Gonzales, and others (1999) and Spillane and Zeuli (1999), although not 

technically validation studies, found that although some teachers reported extensive 

use of NCTM-aligned instructional approaches, few actually appeared to do so in their 

classroom.   

 

Less is known about the validity of teachers’ reports of subject matter content 

coverage.  Smithson and Porter (1994), writing to describe validation work done in 

conjunction with the Content Determinants study (Porter, Floden et al 1986), examined 

the level of agreement between observers and teachers over 62 high school 

mathematics and science lessons.  They found that for all gross content breakdowns 

(i.e., averaging intercoder agreement for algebra, geometry, probability), agreement 

between teachers and observers ranged between .61 and .80, depending upon the 
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method used to construct the measure.  For finer content distinctions (i.e., averaging 

scores for all subtopics, such as variable, expressions, linear equations or inequalities), 

agreement ranged between .49 and .70, again depending upon the calculation method 

selected.  These authors, however, did not identify patterns in teacher-observer 

agreement across subject matter; nor did they hypothesize why such disagreements 

might occur.  

 

Another effort to validate indicators of subject matter content was included in the work 

of Burstein, McDonnell, and other researchers at RAND (1995).  By comparing 70 

secondary school mathematics teachers’ logs of daily practice to artifacts from their 

classroom practice – textbooks, daily assignments, exams and quizzes – RAND 

researchers determined that survey reports reasonably accurately portray whether a 

topic has been taught (p. 29).  The researchers noted that while fine-grained reports of 

the time spent on particular topics were not particularly reliable, more general estimates 

of time-on-task were: agreement between teachers’ reports and classroom artifacts 

ranged from 42 to 71 percent, given 1-point leeway within a 5-point scale. 

 

The level of agreement between observers and teachers reported by these two 

analyses of reports on subject matter content is substantial but not spectacular. 

Burstein, McDonnell, and their co-authors identified some patterns within the varying 

levels of agreement on the mathematical topics covered within their study.  Topics in 

upper-level high school courses were reported with greater accuracy, as were reports 
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on more specific mathematics topics.  Subject matter used as tools in the teaching and 

learning of other topics – e.g., using tables and charts to record measurements of 

geometric figures – was reported less accurately. So, significantly, was content 

associated with recent mathematics reform.  The authors write: “the lack of common 

agreement on the meaning of key terms associated with the mathematics reform 

movement (e.g., math modeling, patterns and functions) is likely to result in 

misinterpretation of the data.” (Burstein et al, 1995, p. xii). These trends are intriguing, 

and warrant further research.    

 
Method 

 
This paper relies upon an interpretive approach to research and theory building (Geertz, 

1973; Glaser & Strauss 1967).  It investigates differences in log reports of classroom 

practice by exploring the meanings different actors – log developers, trained observers, 

teachers – assign to particular words.  This work borrows theories and techniques from 

social theorists and linguists, who argue that meanings are not fixed and immutable but 

variable within and across communities that use particular words (Bakhtin 1981; 

Freeman 1993, 1996; Gee 1999). Gee (1999) argues for using such situated meanings 

as tools of inquiry, and we do so here to illuminate ways in which survey instruments 

become problematic when used across communities.     

 

Data collection for this study took place in eight elementary schools during the spring of 

2000. These schools were each implementing one of the whole-school reform programs 

being tracked by the [name of project], which is investigating the design and 
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enactment of three leading whole school reforms1 and their effects on students' 

academic and social performance.  Because [name of project]’s ambitious data 

collection effort (120 elementary schools and roughly 20,000 students, over six years) 

necessitated valid and reliable indicators of school and classroom processes, [name of 

project] engaged these eight schools to help pilot and improve survey  instruments.    

 

One such survey instrument is a log of mathematics instruction (see Fig. 1). Teachers 

participating in [name of project] complete the log daily for six-week periods three 

times a year, reporting on both the subject matter content and instructional approach 

delivered to a randomly generated “target student” in their mathematics class. To help 

determine how to complete the log, teachers in both the spring 2000 validation and our 

main study attended a day of training on the use of this and a related English Language 

Arts instructional log; they can also refer to a glossary, which describes the subject 

matter content or instructional practices entailed by each item; call a toll-free hotline, 

where questions can be asked of [name of project] staff; and refer to a site facilitator, 

who can answer non-content questions (e.g., “should I also log my ‘calendar 

mathematics’ period?”).  In most cases, the glossary gave definitions and examples for 

each item.  However, these examples were far from mathematically complete 

definitions, and were also far from an exact description of how particular classroom 

activities mapped to log terms.  

 

                                                           
1 The interventions were Accelerated Schools, America’s Choice, and Success for All.  Community for 
Learning schools participated in the pilot, although this program is not now part of the main study.   
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As part of the validity study, pairs of observers watched 29 teacher-participants deliver 

mathematics instruction for one day’s lesson.  After the completion of the lesson, the 

two observers in each classroom wrote detailed fieldnotes with as many verbatim 

quotes as possible, and both the observers and teacher logged the instruction delivered 

to one target student. Focusing on one target student prevented the confusion that 

might arise when teachers individualized instruction, had students working in small 

groups, or otherwise differentiated instruction.  It is these 29 sets of logs that form the 

basis for the match rates presented in the results section. Observers reconciled 

differences in their log among themselves, then one observer interviewed the teacher 

about the log record of that day’s lesson.  Differences among observers were recorded 

and reflected upon in writing; teacher-observer differences were explored in the 

interviews.  In most cases, the challenge to observer and teachers was to find out why 

disagreements arose:  what part of the lesson led someone to mark an item? What 

interpretation of the item made it representative of a teachers’ practice? Text generated 

through interviews and reflection forms the basis for qualitative analysis presented 

below.  

 

Because of its content specificity, with a significant focus on the teaching of particular 

mathematics topics, the log provides a fruitful site for learning more about the validity 

of terms meant to represent mathematical content (see Fig. 1). A “gateway” series of 

items, for instance, asked teachers whether certain mathematics topics had been 

taught and if so, with what emphasis. In order to obtain additional detail about some 
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lessons, the log asked teachers who reported that they taught certain "focal topics" -- 

counting or ordering, place value, fractions, or multi-digit operations -- to answer more 

detailed questions about that particular topic.  For these focal topics, log users reported 

only the presence or absence of a particular topic or activity.  

 

Decisions about the design of the gateway and choice of focal topics for this piloted log 

were made in response to multiple concerns.  Developers were aware of national 

standards and content breakdowns, including those used in the early drafts of the 

Principles and Standards for School Mathematics (NCTM 2000), and in older versions of 

both NCTM and other frameworks. Yet this log was the fourth one piloted by [name of 

project], and feedback from teachers about previous versions often disrupted the neat 

categorization of strands in national documents.  Problem solving and communication 

and representation were added to the gateway section after many teachers reported 

that these topics were not mere processes, but the intended focus of mathematics 

lessons.  Since length was a concern, the number of “focal topics” was limited to four.  

Finally, log developers also wanted data to answer research questions, criteria which 

helped guide the choice of focal topics toward central topics in K-6 mathematics 

instruction. 

 

Teachers and observers could mark multiple gateway and focal topic items to indicate 

lesson content.  A lesson on adding fractions which touched upon algebra and engaged 

students in developing and evaluating conjectures, for instance, would be logged at 
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operations with fractions, algebraic reasoning, and exploration and problem solving.  In 

practice, however, observers tended toward parsimony, choosing to represent lessons 

with as few checks as possible.  Fractions and multi-digit operations comprised the bulk 

of the detailed information available from this study, as very few lessons observed 

featured place value or counting and ordering, the other two focal topics, prominently.  

For this reason, this analysis focuses on these two areas in depth, as well as data from 

“gateway” items. 

 

All but four teachers participating in this study were white females. The distribution of 

teachers across grades is shown in Table 1.  Because observers, and the perspectives 

they brought to the validation study work are also important to this analysis, we 

present some information about them.  Of seven observers, five were doctoral students 

in an education studies program.  Of those five, one had been an elementary teacher, 

another three had tutored or taught in special education settings, and another had 

taught graduate students in education.  The other two observers had doctorates in 

other social science disciplines.  Observers attended 24 hours of training on the use of 

the log. The log was written by [colleague], [author], and others working to refine 

content and instructional distinctions, including experts in both survey research and 

mathematics.  Log authors thus worked across the communities described below – 

some had recently been mathematics teachers, others were involved in mathematics 

education improvement efforts and reform, others were survey researchers, and several 

log reviewers were research mathematicians.    
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Because observers did not hold “the” authoritative view of correct log usage, and 

because these data allow a look inside classrooms by reading and analyzing two 

observers’ narratives of each mathematics classroom, this paper contrasts three 

perspectives: that of observers, teachers, and log developers.   The method was 

simple: ignoring items that focused exclusively on teaching practices (discussion, 

explanations) and the cognitive demand of students’ tasks, we searched for 

explanations for divergences in observers’ ([author], among others) and teachers’ 

application of subject matter terms to particular instances of classroom instruction. This 

search was aided by the fact that observations, interviews, and observer’s reflections 

had been entered into NUD*IST, software designed to allow the management and 

analysis of qualitative data.  For any given disagreement, an analyst (the author, and 

other log developers) could triangulate relevant written observations, reflective 

comments from observers, and teachers’ interview transcripts.  Log developers did not 

independently code observers’ notes, focusing attention instead solely on cases of 

disagreement between observers and teachers, or observers and observers.  The 

original analysis which led to this paper took place in early summer of 2000, as [name 

of project] was adapting the log to its final form. 

 
Results: Validating Mathematical Content Measures 

 

Match rates for the mathematics log were calculated in three ways for gateway items: 

first by calculating the overall rate of exact agreement, including cases in which the 
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teacher and two observers each indicated that a mathematical topic did not appear in 

the lesson, or what we call “zero-zero matches”; second by calculating the exact 

agreement rate excluding the zero-zero matches; third by calculating a match rate 

which excludes zero-zero matches, but includes “off-by-one” matches, similar to RAND 

researchers’ method.  This last method calls any two adjacent categories – a 1 and 2, 

or 3 and 4 – a match.  As Table 2 shows, the “exact match excluding zero-zero” 

category is the most stringent criteria; “exact match including zero-zero” is the least 

stringent2.   Table 3 shows similar calculations for focal topics, where rates were only 

calculated given a member of the teacher/observer trio entered the section, and where 

off-by-one rates were not calculated due to the binary nature of logged reports. The 

rates either show impressive agreement or room for improvement, depending upon 

how one views zero-zero-zero and off-by-one matches.  

_______ 
 

Insert Tables 2 & 3 here 
________ 

 
Explaining disagreements 

 
To investigate the causes for disagreements, this investigation coded text describing 

such disagreements in NUD*IST.   Single disagreements were occasionally coded more 

than once, as when an observer disagreed with the teacher for one reason, and the 

other observer for a different reason.  Roughly half of all disagreements could not be 

coded, either because observers’ comments or teachers’ interviews did not contain 

                                                           
2 Including zero-zero matches also tends to privilege items which received relatively less overall use, such 
as number patterns, functions, and inequalities, since the more “zero” matches, the higher the overall 
match rate 
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enough information to make a judgment as to the cause of the divergence, or because 

the disagreement appeared to exemplify its own category, leaving the analyst without a 

method for determining whether it was part of a pattern or simply a random event.  

 

The coding system developed through an iterative process. Based on an initial 

exploration of the data, analysis began with a set of categories which reflected the 

location of the disagreement – in individual cognition, social structures, etc.  Results of 

this coding are presented below as these themes in both quantitative (proportions) and 

descriptive form; the proportions should not be thought of as frequencies generalizable 

to other instruments of this kind, but instead an extremely rough indicator of the 

relative frequency of problems identified here.  These problems fall into four categories: 

memory/perception, how mathematics is taught in elementary classrooms, meanings 

and language, and instrument design. We will focus most intense scrutiny on the third, 

since it is a novel explanation for measurement error.  

 
Memory/perception.   
 
Although daily logs are used as one remedy for cognitive failures, problems of recall 

and perception explained about 15% of the overall disagreements coded.  In such 

instances, an observer or teacher indicated they “should have” marked a log item, or 

that they “forgot” about an event or topic covered in class. Observers and teachers 

were most likely to pass over events which were brief moments in the context of a 

whole day’s mathematics instruction – for instance when a student completed one 

fraction problem on a worksheet filled with many different types of problems.  Coders’ 
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reflections also occasionally indicated disagreement over whether such brief events 

even occurred, suggesting that one or more parties failed to perceive the event at all.  

 

How mathematics is taught in elementary classrooms.  
 
The analysis of pilot data revealed problems that arise because of the nature of this 

subject matter and how mathematics is taught.  For example, in some lessons students 

touched on one log category in the service of learning another – as when students 

reduced fractions in the course of performing operations with fractions, or used addition 

basic facts while solving a multi-digit multiplication problem.  The instrument, at the 

time of the field trial at least, did not explain how to deal with this kind of event.   

 

Another problem which arises from the nature of classroom mathematics instruction 

stems from the potentially large set of organizational schemes which might be used to 

represent content.  There is no definitive ordering and mapping of the elementary 

mathematical terrain, which left us to make decisions about how to construct categories 

teachers would find easy to remember and use.  Wanting to include a relatively limited 

(perhaps 20) set of mathematical content topics on the log, we were thus constrained 

in this task by needing to subsume finer-grain topics within broader categories.  But this 

led to problems.  For instance, many teachers assign students tasks which require 

representing data through graphs, tables, or charts.  Wanting to place this activity 

under a broader category left us with a choice: place it under “communication and 

representation,” or place it under “statistics.” Arguments could be made for both 
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categorizations, yet we eventually chose one – statistics – which caused at least one 

disagreement on the log. Similar problems occurred where the mathematical point of an 

activity was not clearly stated or potentially multiple; skip counting, for instance, can 

contribute to students’ ability to count, but also their ability to remember basic facts, 

identify patterns in number, or even begin to learn about functions.  Our glossary, 

however, placed skip counting under counting.   

 

Another set of problems in this category arose because of the way mathematics is 

currently conventionally taught in U.S. classrooms.  In contrast to older constructions of 

mathematics lessons, which tended to focus on one topic (e.g., 2-digit multiplication; 

inequalities) at a time, most contemporary curriculum materials contain not only the 

new material for the day, but a smattering of other topics intended for students’ review 

and practice.  As one observer recorded, students worked in one class on a 

mathematics worksheet which included “the following assortment of problems: an 

average; a finding the difference in years word problem; a percent to fraction; 

multiples; writing a shaded part of a grid as percentage, decimal, and fraction; shape of 

a basketball; changing 1 ½ years into months; area and perimeter; multiplication of 

decimals by 10 and 1000; adding, subtracting, and multiplying decimals; adding 

fractions and mixed numbers, subtracting mixed numbers; multiplying and dividing 

fractions.”  Although this lesson is on the extreme end of the spectrum, such spread of 

topics was common in the classrooms observed.  It also complicated logging, increasing 

the possibility of a log user forgetting a topic covered, and raising in many observers’ 
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minds questions about how much emphasis on a topic was required before marking it 

as a focus of daily activity.  This genre of mathematics lesson also raises problems for 

analysts, as well; if the activities in the lesson like the above are each recorded, it likely 

over-emphasizes students’ exposure to such topics, relative to more conventional 

lessons where such topics are accorded at least a few minutes’ time.  If the activities 

are not recorded, the log misses student practice on these problems.   

 

Finally, students’ independent work and practice, another feature of some mathematics 

classrooms, decreased levels of agreement in teachers’ and observers’ records.  In at 

least one school participating in this study, students practiced mathematics problems on 

computers during a separate instructional period.  In another school, students 

completed “wait time” activities – time spent between teacher-led activities doing dittos 

and worksheets.  In neither case did the teachers in these classrooms have close 

knowledge of the content target students covered during these periods.  Observers, 

who had the luxury of focusing on one student only, did have such knowledge, often 

leading to mismatches in topics logged.  

 

Although we cannot claim that the 29 teachers observed for this field test engaged in 

completely typical U.S. elementary mathematics instruction, they did represent a range 

of degree of engagement with improvement efforts, with some using novel curriculum 

materials associated with whole-school reforms, and others using quite traditional 

materials (e.g., Saxon). Thus we argue these mismatches suggest those which might 
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arise in a more representative sample.   In all, roughly a third of disagreements in the 

log pilot arose because of the interaction between the way mathematics is taught in 

today’s classrooms and our efforts to capture that work. 

 
Meaning and language.  
 

There is no absolute, fixed relationship between any word and its meaning(s). What we 

call a “chair” might have easily been called a “table” instead, and vice versa. Instead, 

meaning is assigned to words by the communities who use them.  Different 

communities may assign different meanings to particular words or phrases – for 

instance, “barbeque” means one thing in South Carolina, and something else in 

Georgia. By extension, different communities may also impute different meanings to the 

same phrase, and may also differ linguistically in other ways – the precision with which 

particular words refer to objects or ideas, for instance, or the grammatical structures 

used. We refer to this idea as the way language is used, or “language use,” in particular 

communities.  

 

There is evidence that professional communities constitute important units of analysis in 

language use. That is, social theorists and education scholars have written about the 

specific ways meaning-word relationships are constituted within and travel across 

professional boundaries. Bakhtin (1981), for instance, distinguishes between 

“professional” and “generic” languages (p. 272; 293). Freeman (1993; 1996), Lampert 

(1999) and others study individuals’ use of language to understand teachers’ journeys 
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from novice to professional, insider to outsider, apprentice to expert, or from local 

communities of meaning to more remote.  And Jackson (1968) has written about the 

lack of “technical vocabulary” in teaching.  

  

In this case, we argue that three different professional communities give meanings to 

the terms on the log. These communities are comprised of a) non-teaching observers, 

some of whom were survey researchers b) elementary teachers and other practitioners, 

and c) mathematics educators and researchers engaged in efforts to improve 

elementary teaching.  An examination of mismatches reveals that almost a third of 

disagreements were explained differences in meaning across these community 

boundaries.   Below, we describe the nature of language use in these fields, and 

patterns we found in the data.  Although we draw here on both basic ideas from 

linguistics and some available evidence regarding the history and nature of language 

use in these three fields, the reader should understand these arguments as arguments, 

constructed for the sake of provoking discussion and thought. Grouping particular terms 

with particular professional communities, for instance, must be thought of as informed 

conjecture, rather than a matter of scholarly record.  

 
Access to mathematical language  

 
Evidence suggests mathematicians have a specialized language for communicating 

about subject matter content.  To start, mathematicians are famously particular about 

how subject matter terms are used, eschewing ambiguity for precision and the tightly 

denotative use of terms. In some degree, the care with language helps explain 
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differences between the ways individuals use what some observers call “natural” or 

“ordinary” language and the ways in which mathematicians use language (Smith 2002; 

Pimm 1987).  Where “natural” language often contains terms with multiple meanings, 

mathematical language is much less likely to do so; in addition, the same words often 

have separate mathematical and natural meanings.  Some also report that the process 

of becoming a professional mathematician involves an apprenticeship in which initiates 

come to understand terms, grammar, and modes of discourse through using them in 

the practice of mathematics.  

 

Relatively high levels of agreement obtained for log terms historically associated with 

university mathematics, perhaps because of the nature of mathematical language 

within the university.  Log users tended to agree on log items which used such terms, 

e.g., geometry, probability, statistics, and functions.  An examination of the 

disagreements in this category, further, showed a pattern: disagreement occurred when 

log users’ interpretations of mathematical terms varied from the interpretations given 

by the discipline of mathematics.   For instance, one observer logged a lesson on 

representing student preferences for ice cream flavors by marking “percent, ratio.” 

While this lesson included an emphasis on representing data, students did not explicitly 

discuss ratio or percentages, or represent ice cream preferences as percentages or 

ratios.   Observers and teachers both had difficulty with the item “justification and 

proof,” categorizing these instances of students sharing how they found their answers 

(e.g., “we counted up by ones”) and other events that mathematicians would perhaps 
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not classify as proof (“I checked with a calculator”; a show of hands in the classroom to 

determine whether a particular mathematical point was true).  

 

In these examples, the data suggest that log users were not aware of or able to use 

mathematical definitions and knowledge to classify classroom practice.  From one 

perspective, we might simply argue that accuracy in survey research in mathematics is 

related to survey user’s mathematical knowledge; certainly the percent/ratio example 

suggests this.  However, the justification and proof example also suggest viewing this 

through the lens of users’ access to mathematical language. No observer or teacher 

provided evidence of strong ties to the discipline of mathematics, suggesting this 

particular set of log users had limited access to the mathematical meanings intended for 

this item. Without such access, log users substituted (or constructed) everyday or 

“natural language” definitions for terms.   

 

 Access to elementary teachers’ language 
 

We argue that the community composed of elementary teachers and others (in 

particular, authors of some curriculum materials) has imbued terms like “inequalities” 

“basic facts” or “equivalent fractions” with particular associations, associations that refer 

to mathematical content. “Basic facts,” for instance, typically refers to computation in 

which at least one number in the posed problem has only a single digit – e.g., 17 – 9 = 

8, but not 17 – 12 = 5.  These associations may not only entail subject matter content 

but also knowledge of particular student and instructional tasks.   Sherin, for instance, 
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found knowledge of particular topics was linked to instructional tasks and ways of 

teaching the topics (Sherin 1999).  The same might be true of elementary school 

teachers. “Equivalent fractions” typically refers to efforts to show or find fractions that 

represent the same quantity – 1/2 and 2/4, for instance.  Although fractions can be 

equivalent in other contexts, for instance when reducing or comparing fractions, 

teachers might limit their use of this descriptor to cases in which students are working 

explicitly on the idea of equivalence.   Textbooks, standards, and professional 

developers often organize and name lessons with these terms, and it is likely that 

teachers could communicate with some precision about student and content by using 

such terms. Mathematicians might not use such terms in these ways, but they 

constitute accepted ways of talking about mathematical content in elementary schools. 

This “school mathematical language” may even facilitate communication and 

cooperative work amongst teachers, in the way that technical language in law or 

medicine facilitates professional communication in that field.  

 

Evidence of this language around practice comes from instances in which observers, 

particularly those without prior experience in elementary mathematics classrooms, 

interpreted log terms in non-standard ways. “Ordering fractions,” for instance, typically 

refers in curriculum and teachers’ language to activities which ask students to place 

three or more fractions in ascending order – e.g., ‘put 1/2, 1/8, and 3/4 in order.”  One 

observer, however, used this term to refer to counting with fractions (e.g., 1/2, 1, 1 

1/2, 2). Though the result is, literally, ordered fractions, it is not what is meant by 
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teachers and others who use the term “ordering fractions.” Likewise, in several 

instances observers indicated they were unsure whether particular problems (e.g., “20 

+ 4” “12 – 5 = 7”) fell into the “multi-digit” or “basic facts” category; teachers, perhaps 

more used to the conventions around such definitions, did not question this term.  

Finally, the term “inequalities” refers to tasks which ask students to determine whether 

one number is larger than another: 

 
 104  14    1/2  2/5  
 
One observer, however, used “inequalities” to code an activity in which students 

identified food broken into equal and unequal parts.  Although technically dealing with 

inequalities – the unequal parts – this term is, we argue, conventionally used to refer 

only to the above mathematical activity and instructional content.  

 

Observers, most of whom had not been classroom teachers in elementary schools, 

cannot be faulted for failing to recognize the conventions associated with such terms.  

They had little or no access to the language used by teachers and others to describe 

elementary mathematics classrooms, and how the teaching community marked the 

occurrence of particular events or activities. However, the effects of their lack of access 

to this use of language proved illuminating, for it helps provide emergent evidence for a 

language of practice within elementary school mathematics.  Whereas scholars have 

long been skeptical of the existence of a professional language within education 

(Jackson, 1968), teachers’ use of these categories generally accorded with what log 

writers intended, even though observers’ did not. This indicates some shared 



 24

interpretations of particular terms, and what practices instantiate those particular terms.  

Only when outsiders entered classrooms, and used lay definitions to interpret these 

mathematical terms, did this language become visible.    

 
Access to language used by mathematics reformers 

 

In recent years, a community of mathematics educators comprised of researchers, 

teaching faculty, mathematicians, policy-makers, curriculum developers, and others has 

emerged around efforts to improve mathematics teaching in U.S. classrooms (e.g., 

NCTM 1989, 2000; NRC 2001).  We argue that like the mathematics and elementary 

teaching communities, this reform community has its own language to facilitate 

communication about subject matter content.  We argue that many of the terms used 

by this community have variable meanings – sometimes within the community itself, as 

it comes to agreement on the meaning of particular terms, but more often as terms 

from this community are used by members of others.    

 

To communicate its vision, the mathematics reform community has both redefined older 

terms and coined new ones.  An example of redefinition can be found in “problem 

solving,” a term with a long history of meanings, but which is now used by many in this 

community to represent the work students do when they puzzle over an unfamiliar and 

difficult problem (see Schoenfeld 1985; 1989).  When used in this way, as it was 

intended to be on the log, it represents the process students engage in as they grapple 

with a problem for which they “(do) not have a readily accessible mathematical means 
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by which to achieve resolutions,” (Schoenfeld 1989, p. 88).  Many teachers reported 

problem solving of this sort might also be taught explicitly, as a mathematical topic in 

its own right.  In the wider domain of schools, curriculum materials, and professional 

development, however, the term “problem solving” is often used to represent more 

conventional practices, such as solving word problems for which the solution method is 

fairly obvious, or introducing students to new manipulative materials.  Thus it is not 

surprising that, despite a glossary definition for this term, teachers and observers used 

it to represent both these more conventional activities as well as more difficult student 

tasks more in line with our original intent.   

 

When mathematics reformers introduced new terms, difficulties also arose.  For 

instance, frequent disagreements arose around the following categories:  

 
• Steps of a standard procedure or algorithm3 

• Transitional forms of the standard procedure—e.g., using partial products in 

multiplication 

• Alternative or non-standard methods for solving multi-digit computation 

 

Most observers of U.S. classrooms report that the first activity, the steps of a standard 

procedure or algorithm, is the most common method for teaching students multi-digit 

computation (see Fig. 2 for the compact algorithm for multiplication). Yet newer 

curriculum materials (e.g., Everyday Mathematics, Investigations) employ transitional 
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computation procedures to make plain the mechanics or meaning behind a multi-digit 

operation.  Fig. 2, for instance, shows the transitional procedure for multiplication, 

which involves finding each partial product (e.g. 6 x 8, 6 x 20….), then adding them up.  

This method better identifies place value in each step of the algorithm, and allows for 

potential comparisons between the compact and this expanded method.  By making 

such a comparison, students might understand the compact method more thoroughly.  

Finally, alternative algorithms (also referred to as “non-standard”) are not 

developmental, but simply other algorithms for solving computational problems.  In Fig. 

2, the third version of 56 x 28 shows an algorithm which inverts the usual procedure, 

beginning by multiplying 8 x 6, carrying the four, then multiplying 8 x 50, etc.    

Insert fig. 2 here 

 
Our data suggested that despite explanations in both the mathematics glossary and 

during observer training, log users’ lack of knowledge about these reform mathematics 

terms complicated their reporting.  For instance, one teacher explained why she chose 

the “transitional form” item to represent her lesson: “(after a pause) okay, how we 

broke the process down and how we talked about the steps and how important it is if 

you skip a step or you even skip one of the multiplication, if you don't do your facts, the 

whole process is not going to be right.  We set it up in stages and we do it in order.” 

Log observers’ records show that this teacher emphasized the steps in the standard, 

compact U.S. algorithms during her lesson.  However, the text above suggests she took 

that careful emphasis on the steps (… “we set it up in stages and we do it in order…”) 

                                                                                                                                                                                           
3 According to Bass (2003), an algorithm “consists of a precisely specified sequence of steps that will lead 
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to mean that she was using a transitional form of that procedure.  She ignored the 

item’s cues (and unfamiliar terms) about “partial product” and “transitional forms.”  

These terms proved problematic for observers, as well; one wrote “the method they 

used to solve multi-digit computations was rather unorthodox, but my mathematical 

knowledge is too weak to evaluate whether this method is (an) alternative or non-

standard (procedure).”  Thus terms used by those seeking to improve mathematics 

education are not yet familiar to those outside this community.  

 

Other log terms suffered, in terms of accuracy of use, from similar problems.   One 

teacher reported that she had difficulty distinguishing whether an activity involved 

number patterns or functions.  In another case, a task which asked students to identify 

a pattern in a geometric representation (towers which added an increasing number of 

blocks for every subsequent row) was marked by one observer as a geometric pattern, 

another observer as a numeric pattern, and the teacher as exploration and problem 

solving.  Cases can be made for all these categorizations of this activity, yet the three 

individuals represented it using three separate items.  Observers also puzzled over what 

to label as use of “concrete models” (e.g., do slash marks written on a blackboard 

count?).  In many such cases, the glossary provided with the instrument did not help, 

ironically adding only more ill-defined terms to the process.  

 

In all, terms newly defined or redefined by mathematics reformers (number patterns; 

geometric patterns; communication and representation; exploration and problem 

                                                                                                                                                                                           
to a complete solution for a certain class of computational problems.” 
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solving; meaning of numerator and denominator; meaning of part-whole ratio with sets; 

representing fractions or equivalence with concrete materials; connecting two or more 

concrete representations of fractions or equivalence; connecting concrete 

representations of fractions to number and symbols; why procedures work)4 have only 

a 40% match rate (excluding zero matches), as compared to 68% for terms which we 

argue have relatively more stable and widely known definitions within mathematics or 

conventional elementary mathematics communities.  Table 4 shows examples of terms 

from each category. 

 

We argue the depressed match rate for this set of terms derives from log users’ lack of 

access to the language used by the mathematics reform community described above, 

and perhaps from the imprecision with which some of these subject matter terms have 

been defined in the research literature.  The first explanation points to the difficulties 

entailed in having “conversations” (Gee, 1999) across community boundaries.  Years of 

experience have led mathematics reformers to shared understandings of particular 

terms.  Teachers and observers, most of whom had not participated in that learning 

process, had no means to reach common understanding of those terms.  The second 

explanation suggests that even within the mathematics reform community, some terms 

remain undefined.  Some who have read this article, for instance, disagree with the 

field tested log’s characterization of transitional and alternative algorithms. In this case, 

                                                           
4 Several items, including algebraic reasoning, transitional and alternative methods for solving multi-digit 
computation, etc., received fewer than five uses and were not included in the quantitative analysis.  We 
also recognize that ambiguities exist in this list, and disagreements may occur over where to place 
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the possibility for accurate measurement of subject matter content is further 

diminished.  

 

Instrument design.   
 
Finally, teachers’ and observers’ efforts to use the log to record classroom practice were 

complicated by the design of the instruments, notably the glossary.  The glossary was 

relatively short; it relied more on bulleted examples and references to other 

mathematical terms than it did to longer, more in-depth explanations of the 

mathematical content.  Providing more detail might have alleviated some of the 

problems associated with language and meaning, although it could not possibly have 

eliminated them.  While a glossary provides users some context for terms, it cannot 

provide access to the ways particular communities imbue terms with meaning.  Further, 

glossaries are static collections of words describing other words, rather than concrete 

instantiations or uses of such words in the practice of doing mathematics.  Finally, the 

glossary also contained confusing definitions for a number of terms.  For instance, 

“ordering fractions” included, inexplicably, reducing fractions, equivalent fractions, and 

like and unlike denominators in its definition.  Roughly one-tenth of disagreements 

arose from problems with the glossary.  

 
 

Discussion & Conclusion 
  

                                                                                                                                                                                           
particular items.  However, this list was constructed in consultation with both mathematics educators 
and mathematicians, and represents the best attempt at such a classification system.   
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We cannot be sure how the patterns identified here generalize to other grade levels, 

subject matters, or even other studies of the use of mathematical terms in classrooms.  

Certainly, more research is needed into the use of mathematical terms in elementary 

schools, into the processes by which teachers and observers connect concrete events 

and activities with broader mathematical categories, and into why errors in reporting 

arise.   

 
 
However, the results uncovered here suggest some tentative conclusions for those 

writing, using, and interpreting results from instruments like our mathematics log.    

Terms used to represent mathematics subject matter content are not shared as 

commonly as many seem to assume. By examining disagreements closely, this analysis 

identified patterns within this finding: that log users’ knowledge of  mathematical 

definitions and terms affected the accuracy of their reports; that log users’ knowledge 

of the conventions which connect terms and elementary classroom practices likewise 

affected accuracy; that some terms, particularly those more recently inserted into the 

conversation about mathematics reform, proved to have particularly low rates of shared 

interpretation and agreement.  We argue for viewing these difficulties not simply as 

problems with log users’ knowledge or terms’ definitions, but also as problems inherent 

in designing survey items with common meanings across different communities. This 

analysis also identified the ways in which structural features of elementary mathematics 

education, as taught currently, affect agreement and the logging process itself.  And 
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this analysis confirmed the presence of conventionally understood sources of error, 

such as memory, perception, and instrument design.  

 

This analysis carries several practical implications. First, these problems remind 

researchers that measurement error arises not only from conventional sources, but also 

from characteristics of the terrain meant to be measured. Measuring mathematics 

content, for instance, may be more difficult than measuring teachers’ use of different 

grouping arrangements or the number of students who attend class on a given day.  

This adds an additional – and difficult to predict – complication to instrument designers’ 

work. 

 

Second, the confirmation of RAND researchers’ findings (Burstein, McDonnell et al, 

1995) that “reform” content (e.g., number patterns) is less accurately reported than 

“traditional” content raises some concern.   Researchers have come to expect such 

error, and have sophisticated methods for coping with it, but when some of that error is 

unevenly distributed over content items, it can pose serious problems for independent 

variables in many statistical techniques. The more error and the less “true” signal 

compose an independent measure, the more it resembles a stochastic (or random) 

variable, and the less likely it will appear systematically related to any dependent 

measure – even if the “true” relationship is strong.  Said another way, measurement 
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error, at least in bivariate regressions, tends to reduce the absolute value of the 

estimated coefficient (Hanushek & Jackson 1977, p. 288).5 

 

This poses a problem for analysts interested in using error-prone instruments to predict 

school or student performance. Analysts have, for the most part, dealt with this 

problem by emphasizing significance levels, rather than the absolute size of a 

coefficient, when describing a variable’s effects.  The problem becomes more complex, 

however, when analysts wish to know something about the comparative value of two 

theoretically separate independent influences upon an outcome.  Intuitively, it seems 

important that the hypothesized independent influences have roughly the same size 

error component proportionate to the size of the “true” signal.  This can be 

demonstrated through the problem which arises if the actual effects of two variables 

were roughly equal, but one were composed of mostly “true” signal, and another 

mostly “error.”  In this situation, the more accurately measured independent variable 

would appear more effective than the latter, despite the similarity in their actual size.  

This situation might apply, for instance, to linking student outcomes with engagement 

with either conventional mathematics topics –  improper fractions, proper fractions, 

operations with fractions – or newer topics such as problem solving, justification and 

proof, or mathematical communication. More disagreement about what those novel 

terms means such topics are likely to be less accurately measured, and may be less 

likely to show an effect in statistical models. 

 

                                                           
5 The situation for multivariate regression is more complex; see Hanushek & Jackson 1977, p. 288.  
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Our findings also offer a theoretical lesson about language, and the role it plays in both 

schools and research efforts within and around schools.  Over 30 years ago, Jackson 

(1968) observed that “one of the most notable features of teacher talk is the absence 

of a technical vocabulary” (p. 143).  More recently, others have studied language use 

around recent education reforms, reporting again that a lack of common language 

among and between policy-makers, teachers, teacher educators, and scholars hampers 

efforts toward those reforms (Author, 2001; Author & Colleague 2000).  The findings 

here slightly modify and expand, to some degree, upon these studies.  Teachers and 

log developers did appear to have some common language for communicating about 

the content of mathematical work in classrooms – a school mathematical language; the 

existence of this common language became clear as individuals inexperienced in 

classroom mathematics attempted to use the instrument.  The extent of this common 

language, however, has yet to be mapped out.  While well-established terms like 

“inequalities” and “ordering fractions” were commonly used with shared meaning, many 

others were not. 

 

Viewing language use across the communities provides another perspective, one which 

footnotes this last conclusion.  In contrast to the unwritten system of conventions which 

links particular terms to mathematical content and practices within U.S. classrooms, 

mathematicians have a longer tradition of using formal definitions as part of their 

everyday work.  Unlike natural language, which allows considerable variability in 

meaning, and in which connotation is often important, mathematical language is 
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carefully and precisely denotative.  Definitions matter.  Mathematical definitions are 

explicit, unambiguous, and consistent (Smith, 2002).   This care with terms allows 

mathematicians to communicate clearly and understandably about mathematics, to 

assume shared meaning, and to refer clearly to particular objects, actions, and ideas. 

This analysis suggests that some of the language around elementary mathematics 

education lacks both the precision with which mathematicians speak about 

mathematical topics and content, and carefully crafted definitions and meanings for 

particular subject matter content.  This is a problem for research, but it might also pose 

problems among those who work in classrooms, with students, and who daily interact 

over how a particular student is doing or whether particular content has been covered. 

 

This point is also illustrated by an episode which occurred as analysts sought to re-write 

the log.  As the log was revised, its authors noticed that it contained terms and phrases 

that stem from the prevailing school curriculum, but which are not part of conventional 

disciplinary mathematical usage.   For instance, one portion of the log asked teachers 

whether they covered “mixed numbers;” another asked teachers whether they covered 

“decimal numbers.”  These terms do not refer, except indirectly, to classes of numbers, 

but rather to notational representations of them.  For example, the same number, one 

and one quarter, can be written (or represented) as a decimal (1.25), as a mixed 

number (1 1/4) or as a fraction (5/4).  Thus, 1 1/4 is a “mixed number,” while 1.25 and 

5/4 are not, though they have the same numerical value as 1 1/4.  Mathematicians tend 

to pay less heed to naming notational representations of numbers, and focus instead on 
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classes of numbers themselves, for example the natural numbers (1, 2, 3, …), the 

whole numbers (0, 1, 2, 3, …; add zero to the natural numbers), the integers (…, -2, -1, 

0, 1, 2, …; the whole numbers and their negatives, or additive inverses), or the rational 

numbers (numbers expressible as the result of dividing one integer by another one 

different from zero, or p/q with p, q integers and q not equal to  0).  Thus 1.25, 1 1/4, 

and 5/4 all represent the same rational number. 

 

Thus the language of practice used in elementary mathematics identified earlier is not a 

mathematical language, in the sense that it shares meanings and conventions with the 

language mathematicians have constructed.  This observation is shared by others.  Jim 

Lewis, a mathematician who is currently engaged in teaching mathematics to preservice 

teachers, writes: 

 
In my world one talks about “natural numbers,” “integers” and “rationals.”  In 

the world of the elementary school teacher one talks about “whole numbers,” 

“decimals,” “fractions,” “negative numbers” etc.  I’ve discovered this year that 

the distinction makes it very hard to communicate with the students in my 

class. (Lewis, personal communication 3/30/01) 

 
Evidence from recent efforts to improve mathematical teaching and learning also 

suggests a disjunct between everyday and mathematical languages for talking about 

classroom mathematics instruction.  Judith Roitman (1998), a mathematician 

considering the 1989 NCTM standards, wrote: 
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Although I am generally pleased by the major directions of the standards, it is 

undeniable that the standards documents are peppered with statements that 

are mathematically questionable.  Generally, these are not anything as simple 

as a straightforward mathematical mistake.  Their best description is as 

something no one who really knew the mathematics would say. (p. 28) 

 
That teachers and mathematicians speak different languages is not surprising, for 

different professional affiliations bring different training, norms, customs, and 

knowledge.  However, there are reasons to unite the language used by these 

communities.  One is some scholars’ call for children to be doing mathematics as 

mathematicians do it (see, e.g., Lampert 1990); if such a move toward authentic work 

within a discipline is to occur, the language used to support such work needs to reflect 

that used by mathematicians themselves.  Another is credibility within and across 

communities with stakes in mathematics education.  If mathematics educators or 

researchers are sloppy in the use of mathematical terms, it casts reasonable doubt on 

the carefulness of our inquiry and analyses.  Recent critiques of reform movements 

(e.g., ones made by the group Mathematically Correct) have focused on such 

inaccuracies.  Finally, the use of language is educative; if instruments like our 

mathematics log, or classroom discourse itself support inaccurate usage, students will 

have more difficulty learning content.  
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Table 1: Teachers’ grade level 

 

Grade Number of 

teachers 

First 6 

Second 5 

Third 11 

Fourth 4 

Fifth 3 
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Table 2: Agreement rates for gateway section of log 

 
Gateway item Exact matches, 

including zero-

zero 

Exact matches, 

excluding zero-

zero 

Off-by-one 

matches, 

excluding zero-

zero 

Basic fractions 0.83 0.08 0.42 

Decimal fractions 0.94 0.50 0.50 

Ordering fractions 0.90 0.45 0.82 

Improper fractions or mixed numbers 0.90 0.25 0.75 

Operations with fractions 0.89 0.22 0.56 

Multi-digit addition and subtraction 0.73 0.43 0.90 

Multi-digit multiplication and division 0.83 0.31 0.63 

Addition and subtraction basic facts 0.67 0.34 0.75 

Multiplication and division basic facts 0.87 0.73 0.87 

Number patterns 0.84 0.23 0.62 

Percent, ratios * * * 

Geometry 0.78 0.22 0.72 

Geometric patterns 0.90 0.00 0.50 

Measurement 0.76 0.40 0.84 

Probability * * * 

Statistics 0.87 0.11 0.78 

Functions 0.92 0.44 0.56 

Inequalities 0.89 0.00 0.00 

Algebraic reasoning * * * 

Mathematical communication and 

representation 0.40 .07 0.51 
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Exploration and problem solving 0.54 0.15 0.50 

Justification and proof 0.63 0.08 0.36 

 
* Indicates less than five uses by teachers or observers. 
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Table 3: Agreement rates for focal topics sections of log 
 

Fractions 

Match rate including 

zero-zero 

Match rate excluding 

zero-zero matches 

Meaning of numerator and denominator 0.857 0.500 

Meaning of part-whole ratio with sets 0.857 0.333 

Meaning of part-whole ratio with regions * * 

Meaning of fractions as division of two whole numbers * * 

Meaning of fractions as points between whole 

numbers on the number-line 

* * 

Equivalent fractions 0.857 0.667 

Comparing size of fractions 0.714 0.500 

Ordering fractions 0.714 0.500 

Representing fractions or equivalence with concrete 

materials 

0.571 0.500 

Connecting two or  more concrete representations of 

fractions or equivalence 

0.714 0.000 

Connecting concrete representation of fractions or 

equivalence to numbers and symbols 

0.571 0.500 

Finding common denominators 0.857 0.500 

Operations with fractions (adding, subtracting, 

multiplying, dividing) with concrete materials or 

pictures 

* * 

Operations with fractions (adding, subtracting, 

multiplying, dividing) in symbolic form 

1.00 1.00 

 

Operations 
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Steps of standard procedures or algorithms 0.875 0.857 

Why a standard procedure or algorithm works 0.500 0.000 

Regrouping-e.g., ones, tens hundreds; and tenths, 

hundredths, etc. 

0.750 0.714 

Transitional forms of the standard procedure—e.g., 

using partial products in multiplication 

0.500 0.000 

Alternative or non-standard methods for solving multi-

digit computations 

* * 

Why an alternative or non-standard procedure works * * 

Connecting a concrete model to the steps of a 

procedure 

* * 

Comparing different methods for solving multi-digit 

computations 

* * 

Using computational procedures to solve problems .625 .625 

   
 
* Indicates three or fewer uses by teachers or observers.  
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 Table 4: Examples of terms used in [name of project] log pilot 

 

From mathematics 

community 

 From elementary 

mathematics teaching 

community 

From mathematics 

education and research 

community 

Geometry 

Fractions 

Functions 

Proof 

  

 

Inequalities 

Ordering fractions 

Multi-digit addition 

Measurement 

  

Algebraic reasoning 

Number patterns 

Exploration and problem-

solving 
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Figure 1: Log “gateway” and fractions section 

 



 44

Figure 2: Compact, transitional, and alternative algorithms 
 
 

 
 
 Transitional 

 

 
 
 
 
 
 
 

 
 

Compact/standard 
 

            56 
      x    28 

                      448 
         1120 

                    1568   

 
 

Alternative 
 

           56 
                         x 28 
                          168 
                         1400 
                         1568 
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